已知方程mx+ny=6的兩個(gè)解是
x=1
y=1
;
x=2
y=-1
,求2m-n的值.
考點(diǎn):二元一次方程的解
專題:
分析:利用方程組的解組成新的方程組求出m,n,再求出2m-n的值即可.
解答:解:∵方程mx+ny=6的兩個(gè)解是
x=1
y=1
x=2
y=-1
,
m+n=6
2m-n=6
,
解得
m=4
n=2

∴2m-n=2×4-2=6.
點(diǎn)評(píng):本題主要考查了二元一次方程的解,解題的關(guān)鍵是正確求出m,n的值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

一次籃、排球比賽,共有48個(gè)隊(duì),520名運(yùn)動(dòng)員參加,其中籃球隊(duì)每隊(duì)10名,排球隊(duì)每隊(duì)12名,求籃、排球各有多少隊(duì)參賽?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

為了落實(shí)黨中央提出的“惠民政策”,我市今年計(jì)劃開發(fā)建設(shè)A、B兩種戶型的“廉租房”共40套.投入資金不超過200萬元,又不低于198萬元.開發(fā)建設(shè)辦公室預(yù)算:一套A型“廉租房”的造價(jià)為5.2萬元,一套B型“廉租房”的造價(jià)為4.8萬元.
(1)請(qǐng)問有幾種開發(fā)建設(shè)方案?
(2)哪種建設(shè)方案投入資金最少?最少資金是多少萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

按要求解答下列各小題
(1)化簡(jiǎn)
12
+
2
3
-1
-
6
×
1
2

(2)已知:a=
3
-2,b=
3
+2,求代數(shù)式a2+ab+b2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,∠1=∠ACB,∠2=∠3,F(xiàn)H⊥AB于H.問CD與AB有什么關(guān)系?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

倡導(dǎo)研究性學(xué)習(xí)方式,著力教材研究,習(xí)題研究,是學(xué)生跳出題海,提高學(xué)習(xí)能力和創(chuàng)新能力的有效途徑.下面是一案例,請(qǐng)同學(xué)們認(rèn)真閱讀、研究,完成“類比猜想”及后面的問題.
習(xí)題解答
習(xí)題 如圖(1),點(diǎn)E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,連接EF,則EF=BE+DF,說明理由.
解答:∵正方形ABCD中,AB=AD,∠BAD=∠ADC=∠B=90°,
∴把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△ADE′,點(diǎn)F、D、E′在一條直線上.
∴∠E′AF=90°-45°=45°=∠EAF,
又∵AE′=AE,AF=AF
∴△AE′F≌△AEF(SAS)
∴EF=E′F=DE′+DF=BE+DF.
習(xí)題研究
觀察分析:觀察圖(1),由解答可知,該題有用的條件是①ABCD是四邊形,點(diǎn)E、F分別在邊BC、CD上;②AB=AD;③∠B=∠D=90°;④∠EAF=
1
2
∠BAD.
類比猜想:(1)在四邊形ABCD中,點(diǎn)E、F分別在BC、CD上,當(dāng)AB=AD,∠B=∠D時(shí),還有EF=BE+DF嗎?
   研究一個(gè)問題,常從特例入手,請(qǐng)同學(xué)們研究:如圖(2),在菱形ABCD中,點(diǎn)E、F分別在BC、CD上,當(dāng)∠BAD=120°,∠EAF=60°時(shí),還有EF=BE+DF嗎?
(2)在四邊形ABCD中,點(diǎn)E、F分別在BC、CD上,當(dāng)AB=AD,∠B+∠D=180°,∠EAF=
1
2
∠BAD時(shí),EF=BE+DF嗎?
歸納概括:反思前面的解答,思考每個(gè)條件的作用,可以得到一個(gè)結(jié)論“EF=BE+DF”的一般命題:
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

5名運(yùn)動(dòng)員身高分別是(單位:厘米):179,176,180,177,175.則這5個(gè)數(shù)據(jù)的極差是
 
,平均數(shù)是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

x2-
2
5
x+
 
=(x-
 
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知數(shù)據(jù)x1、x2、x3、x4、x5的平均數(shù)為3,方差為2,則2x1、2x2、2x3、2x4、2x5的平均數(shù)為
 
,方差為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案