如圖,AB是⊙O的直徑,BC是⊙O的切線,D是⊙O上一點,且ADOC.
(1)求證:△ADB△OBC;
(2)若AB=2,BC=
5
,求AD的長.(結(jié)果保留根號)
(1)證明:∵ADOC,
∴∠A=∠COB,
∵AB是⊙O的直徑,BC是⊙O的切線,
∴∠D=90°,∠CBO=90°,
即∠A=∠COB,∠D=∠CBO,
∴△ADB△OBC.

(2)OB=
1
2
AB=1,
在△OBC中,由勾股定理得:OC=
OB2+BC2
=
6
,
∵△ADB△OBC,
AD
OB
=
AB
OC

AD
1
=
2
6

解得:AD=
6
3

答:AD的長是
6
3
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,⊙O與AB切于點C,∠BCE=60°,DC=6,DE=4,則S△CDE為( 。
A.6
5
B.6
3
C.6
2
D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,矩形紙片ABCD,點E是AB上一點,且BE:EA=5:3,EC=15
5
,把△BCE沿折痕EC向上翻折,若點B恰好落在AD邊上,設(shè)這個點為F,若⊙O內(nèi)切于以F、E、B、C為頂點的四邊形,則⊙O的面積=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(初三)如圖,△ABC中,AB=AC,I為△ABC的內(nèi)心,AI的延長線交△ABC的外接圓于點D,過點I作BC的平行線分別交AB、AC于E、F,若O是△DEF外接圓的圓心.
證明:(1)O點在線段AD上;
(2)AB、AC是⊙O的切線.
(初二)如圖,四邊形ABCD中,∠ADC=60°,∠ABC=30°,DA=DC,求證,BD2=AB2+BC2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,⊙P內(nèi)含于⊙O,⊙O的弦AB切⊙P于點C,且ABOP.若陰影部分的面積為10π,則弦AB的長為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在△ABC中,∠ACB=90°,O為BC邊上一點,以O(shè)為圓心,OB為半徑作半圓與AB邊和BC邊分別交于點D、點E,連接CD,且CD=CA,BD=6
5
,tan∠ADC=2.
(1)求證:CD是半圓O的切線;
(2)求半圓O的直徑;
(3)求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,⊙O是△ABC外接圓,直徑AB=12,∠A=2∠B.
(1)∠A=______°,∠B=______°;
(2)求BC的長(結(jié)果用根號表示);
(3)連接OC并延長到點P,使CP=OC,連接PA,畫出圖形,求證:PA是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,△ABO中,OA=OB,以O(shè)為圓心的圓經(jīng)過AB的中點C,且分別交OA、OB于點E、F.
求證:AB是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,⊙O的半徑為5cm,直線l⊥OA交⊙O于點C、D,垂足為B,且CD=8cm,則直線l沿半徑OA向下平移______cm時與⊙O相切.

查看答案和解析>>

同步練習(xí)冊答案