如圖,⊙O是△ABC外接圓,直徑AB=12,∠A=2∠B.
(1)∠A=______°,∠B=______°;
(2)求BC的長(結(jié)果用根號表示);
(3)連接OC并延長到點P,使CP=OC,連接PA,畫出圖形,求證:PA是⊙O的切線.
(1)∵∠C=90°,∠A=2∠B,
∴∠A=60°,∠B=30°;

(2)∵AB為直徑,
∴∠ACB=90°,
又∵∠B=30°,
∴AC=
1
2
AB=65.
∴BC=
AB2-AC2
=6
3
;

(3)如圖,∵OP=2OC=AB,
∵∠BAC=60°,OA=OC,
∴△OAC為等邊三角形.
∴∠AOC=60°.
在△ABC和△OPA中,
∵AB=OP,∠BAC=∠POA=60°,AC=OA,
∴△ABC≌△OPA.
∴∠OAP=∠ACB=90°.
∴PA是⊙O的切線.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

已知如圖:△ABC內(nèi)接于⊙O,P為BC邊延長線上的一點,PA為⊙O的切線,切點為A,若PA=6,PC=4,求
sinB
sinACB
的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

e圖所示,直線AB、CD相交于點P,點Q、E在AB上,已知:PQ=8,QE=e,sen∠BPC=
5
5
,O為射線QA上的一動點,⊙O的半徑為
5
,開始時,O點與Q點重合,⊙O沿射線QA方向移動.
(1)當圓心O運動到與點E重合時,判斷此時⊙O與直線CD的位置關(guān)系,交說明e的理由;
(少)設(shè)移動后⊙O與直線CD交于點l、N,若△OlN是直角三角形,求圓心O移動的距離.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,AB是⊙O的直徑,BC是⊙O的切線,D是⊙O上一點,且ADOC.
(1)求證:△ADB△OBC;
(2)若AB=2,BC=
5
,求AD的長.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,PA、PB切⊙O于A、B兩點,CD切⊙O于點E,分別交PA、PB于點C、D.若PA、PB的長是關(guān)于x的一元二次方程x2-mx+m-1=0的兩個根,求△PCD的周長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在△ABC中,∠ABC=90°,AB=6,BC=8.以AB為直徑的⊙O交AC于D,E是BC的中點,連接ED并延長交BA的延長線于點F.
(1)求證:DE是⊙O的切線;
(2)求DB的長;
(3)求S△FAD:S△FDB的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,從⊙O外一點A作⊙O的切線AB、AC,切點分別為B、C,且⊙O的直經(jīng)BD=6,連接CD、AO、BC,且AO與BC相交于點E.
(1)求證:CDAO;
(2)設(shè)CD=x,AO=y,求y與x之間的函數(shù)關(guān)系式,并直接寫出自變量x的取值范圍;
(3)請閱讀下方資源鏈接內(nèi)容.在(2)的基礎(chǔ)上,若CD、AO的長分別為一元二次方程x2-(4m+1)x+4m2+2=0的兩個實數(shù)根,求AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知P為⊙O外一點,PA,PB分別切⊙O于點A,B,BC為直徑.求證:ACOP.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,A是半徑為2的⊙O上的一點,P是OA延長線上的一動點,過P作⊙O的切線,切點為B,設(shè)PA=m,PB=n.
(1)當n=4時,求m的值;
(2)⊙O上是否存在點C,使△PBC為等邊三角形?若存在,請求出此時m的值;若不存在,請說明理由;
(3)當m為何值時,⊙O上存在唯一點M和PB構(gòu)成以PB為底的等腰三角形?并直接答出:此時⊙O上能與PB構(gòu)成等腰三角形的點共有幾個?

查看答案和解析>>

同步練習冊答案