【題目】如圖,已知AB∥CD,AD∥BC,∠DCE=90°,點E在線段AB上,∠FCG=90°,點F在直線AD上,∠AHG=90°.
(1)找出圖中與∠D相等的角,并說明理由;
(2)若∠ECF=25°,求∠BCD的度數(shù);
(3)在(2)的條件下,點C(點C不與B,H兩點重合)從點B出發(fā),沿射線BG的方向運動,其他條件不變,求∠BAF的度數(shù).
【答案】(1)與∠D相等的角為∠DCG,∠ECF,∠B(2)155°(3)25°或155°
【解析】
(1)根據(jù)平行線性質(zhì)和同角的余角相等可得:與∠D相等的角為∠DCG,∠ECF,∠B.
(2)由垂直定義得∠FCD=65°,所以∠BCD=65°+90°=155°.
(3)分兩種情況進(jìn)行討論:①如圖a,當(dāng)點C在線段BH上時,點F在DA的延長線上, 由AD∥BC,得∠BAF=∠B;②如圖b,當(dāng)點C在BH的延長線上時,點F在線段AD上.∠B=25°,AD∥BC,所以∠BAF=180°-25°=155°.
解:(1)與∠D相等的角為∠DCG,∠ECF,∠B.(1分)理由如下:
∵AD∥BC,
∴∠D=∠DCG.
∵∠FCG=90°,∠DCE=90°,
∴∠ECF=∠DCG=∠D.
∵AB∥DC,
∴∠B=∠DCG=∠D,
∴與∠D相等的角為∠DCG,∠ECF,∠B.
(2)∵∠ECF=25°,∠DCE=90°,
∴∠FCD=65°.
又∵∠BCF=90°,
∴∠BCD=65°+90°=155°.
(3)分兩種情況進(jìn)行討論:
①如圖a,當(dāng)點C在線段BH上時,點F在DA的延長線上,此時∠ECF=∠DCG=∠B=25°.
∵AD∥BC,
∴∠BAF=∠B=25°;
②如圖b,當(dāng)點C在BH的延長線上時,點F在線段AD上.
∵∠B=25°,AD∥BC,
∴∠BAF=180°-25°=155°.
綜上所述,∠BAF的度數(shù)為25°或155°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O中,AB是直徑,點D是⊙O上的一點,點C是 的中點,弦CM垂直AB于點F,連接AD,交CF于點P,連接BC,∠DAB=30°.
(1)求∠ABC的度數(shù);
(2)若CM=4 ,求 的長度.(結(jié)果保留π)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知等腰△AOB,AO=AB=5,OB=6.以O(shè)為原點,以O(shè)B邊所在的直線為x軸,以垂直于OB的直線為y軸建立平面直角坐標(biāo)系.
(1)求點A的坐標(biāo);
(2)若點A關(guān)于y軸的對稱點為M,點N的橫、縱坐標(biāo)之和等于點A的橫坐標(biāo),請在圖中畫出一個滿足條件的△AMN,并直接在圖上標(biāo)出點M,N的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點E,F分別是AB,CD上的點,點G是BC的延長線上一點,且∠B=∠DCG=∠D,則下列判斷中,錯誤的是( )
A. ∠AEF=∠EFC B. ∠A=∠BCF C. ∠AEF=∠EBC D. ∠BEF+∠EFC=180°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知A(n,-2),B(1,4)是一次函數(shù) y=kx+b的圖象和反比例函數(shù) 的圖象的兩個交點,直線AB與y軸交于點C.
(1)求反比例函數(shù)和一次函數(shù)的關(guān)系式;
(2)求△AOC的面積;
(3)觀察圖象,直接寫出反比例函數(shù)值大于一次函數(shù)值x取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=6,BC=8,點E是BC邊上一點,連接AE,把∠B沿AE折疊,使點B落在點B′處,當(dāng)△CEB′為直角三角形時,BE的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)生的學(xué)業(yè)負(fù)擔(dān)過重會嚴(yán)重影響學(xué)生對待學(xué)習(xí)的態(tài)度.為此我市教育部門對部分學(xué)校的八年級學(xué)生對待學(xué)習(xí)的態(tài)度進(jìn)行了一次抽樣調(diào)查(把學(xué)習(xí)態(tài)度分為三個層級,A級:對學(xué)習(xí)很感興趣;B級:對學(xué)習(xí)較感興趣;C級:對學(xué)習(xí)不感興趣),并將調(diào)查結(jié)果繪制成圖①和圖②的統(tǒng)計圖(不完整).請根據(jù)圖中提供的信息,解答下列問題:
(1)此次抽樣調(diào)查中,共調(diào)查了 名學(xué)生;
(2)將圖①補充完整;
(3)求出圖②中C級所占的圓心角的度數(shù);
(4)根據(jù)抽樣調(diào)查結(jié)果,請你估計我市近8000名八年級學(xué)生中大約有多少名學(xué)生學(xué)習(xí)態(tài)度達(dá)標(biāo)(達(dá)標(biāo)包括A級和B級)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一副含 和 角的三角板 和 疊合在一起,邊 與 重合, (如圖1),點 為邊 的中點,邊 與 相交于點 ,此時線段 的長是 . 現(xiàn)將三角板 繞點 按順時針方向旋轉(zhuǎn)(如圖2),在 從 到 的變化過程中,點 相應(yīng)移動的路徑長共為 . (結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A,B兩點在數(shù)軸上對應(yīng)的數(shù)分別為a,b,且點A在點B的左邊,|a|=10,a+b=80,ab<0.
(1)求出a,b的值;
(2)現(xiàn)有一只電子螞蟻P從點A出發(fā),以3個單位長度/秒的速度向右運動,同時另一只電子螞蟻Q從點B出發(fā),以2個單位長度/秒的速度向左運動.
①設(shè)兩只電子螞蟻在數(shù)軸上的點C相遇,求出點C對應(yīng)的數(shù)是多少?
②經(jīng)過多長時間兩只電子螞蟻在數(shù)軸上相距20個單位長度?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com