如圖:一次函數(shù)的圖象與反比例函數(shù)的圖象交于A(-2,6)和點(diǎn)B(4,n)
(1)求反比例函數(shù)的解析式和B點(diǎn)坐標(biāo)
(2)根據(jù)圖象回答,在什么范圍時(shí),一次函數(shù)的值大于反比例函數(shù)的值.
(1),B(4,-3);(2)x<-2和0<x<4
解析試題分析:(1)先把A點(diǎn)的坐標(biāo)代入反比例函數(shù)即可求得k的值,從而可得B點(diǎn)的坐標(biāo);
(2)求出一次函數(shù)圖象在反比例函數(shù)圖象的上方時(shí)的x的取值范圍即可.
(1)∵A(-2,6)在函數(shù)的圖象上
∴
反比例函數(shù)的解析式為
點(diǎn)B(4,n)在函數(shù)的圖象上
∴
∴B(4,-3);
(2)由圖象可得當(dāng)時(shí),一次函數(shù)的值大于反比例函數(shù)的值.
考點(diǎn):本題考查了用待定系數(shù)法求函數(shù)關(guān)系式,一次函數(shù)與反比例函數(shù)的交點(diǎn)
點(diǎn)評:解答本題的關(guān)鍵是熟練掌握用待定系數(shù)法求函數(shù)關(guān)系式,同時(shí)理解當(dāng)一次函數(shù)圖象在反比例函數(shù)圖象的上方時(shí),一次函數(shù)的值大于反比例函數(shù)的值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
12 | x |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,一次函數(shù)的圖象與反比例函數(shù)y1= – ( x<0)的圖象相交于A點(diǎn),與y軸、x軸分別相交于B、C兩點(diǎn),且C(2,0).當(dāng)x<–1時(shí),一次函數(shù)值大于反比例函數(shù)的值,當(dāng)x>–1時(shí),一次函數(shù)值小于反比例函數(shù)值.
(1) 求一次函數(shù)的解析式;
(2) 設(shè)函數(shù)y2= (x>0)的圖象與y1= – (x<0)的圖象關(guān)于y軸對稱.在y2= (x>0)的圖象上取一點(diǎn)P(P點(diǎn)的橫坐標(biāo)大于2),過P作PQ⊥x軸,垂足是Q,若四邊形BCQP的面積等于2,求P點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,一次函數(shù)的圖象與反比例函數(shù)(x<0)的圖象相交于A點(diǎn),與y軸、x軸分別相交于B、C兩點(diǎn),且C(2,0),當(dāng)x<-1時(shí),一次函數(shù)值大于反比例函數(shù)值,當(dāng)x>-1時(shí),一次函數(shù)值小于反比例函數(shù)值.
(1)求一次函數(shù)的解析式;
(2)設(shè)函數(shù)(x>0)的圖象與(x<0)的圖象關(guān)于y軸對稱,在(x>0)的圖象上取一點(diǎn)P(P點(diǎn)的橫坐標(biāo)大于2),過P點(diǎn)作PQ⊥x軸,垂足是Q,若四邊形BCQP的面積等于2,求P點(diǎn)的坐標(biāo).
解答:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,一次函數(shù)的圖象與反比例函數(shù)y1= – ( x<0)的圖象相交于A點(diǎn),與y軸、x軸分別相交于B、C兩點(diǎn),且C(2,0).當(dāng)x<–1時(shí),一次函數(shù)值大于反比例函數(shù)的值,當(dāng)x>–1時(shí),一次函數(shù)值小于反比例函數(shù)值.
(1) 求一次函數(shù)的解析式;
(2) 設(shè)函數(shù)y2= (x>0)的圖象與y1= – (x<0)的圖象關(guān)于y軸對稱.在y2= (x>0)的圖象上取一點(diǎn)P(P點(diǎn)的橫坐標(biāo)大于2),過P作PQ⊥x軸,垂足是Q,若四邊形BCQP的面積等于2,求P點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,一次函數(shù)的圖象與反比例函數(shù)y1= – ( x<0)的圖象相交于A點(diǎn),與y軸、x軸分別相交于B、C兩點(diǎn),且C(2,0).當(dāng)x<–1時(shí),一次函數(shù)值大于反比例函數(shù)的值,當(dāng)x>–1時(shí),一次函數(shù)值小于反比例函數(shù)值.
(1) 求一次函數(shù)的解析式;
(2) 設(shè)函數(shù)y2= (x>0)的圖象與y1= – (x<0)的圖象關(guān)于y軸對稱.在y2= (x>0)的圖象上取一點(diǎn)P(P點(diǎn)的橫坐標(biāo)大于2),過P作PQ⊥x軸,垂足是Q,若四邊形BCQP的面積等于2,求P點(diǎn)的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com