已知△ABC,以AC為邊在△ABC外作等腰△ACD,其中AC=AD。
【小題1】如圖1,以AB為邊在△ABC外作等腰△ABE,其中AB=AE,,試證明BD=CE;
【小題2】如圖2,若∠ABC=30°,△ACD是等邊三角形,AB=3,BC=4,求BD的長;
【小題3】如圖3,若∠ACB為銳角,作AH⊥BC于H,當BD2=4AH2+BC2時,問∠DAC與∠ABC有怎樣的關(guān)系,直接寫出結(jié)論(不需要證明)。

【小題1】∵∠BAE=∠CAD
∴∠CAE=∠BAD
∵AE=AB,AC=AD,
∴△ACE≌△ABD
∴BD=CE…….………………………………………………………………5分
【小題2】如圖2,以A為頂點AB為邊在外作=60°,并在AE上取AE=AB,連結(jié)BE和CE.                  ……………………………………7分

是等邊三角形,
∴AD=AC,=60°.
=60°,
+=+.
=.
.   ………………8分                                                                              
∴EC=BD.
=60°,AE=AB=3,
是等邊三角形,
="60°," EB= 3, …………………9分
,
.
,EB=3,BC=4,
∴EC=5.
∴BD=5.             ……………………10分
【小題3】=2.       ……………………12分                              
附:證明:
如圖3,過點B作BE∥AH,并在BE上取BE=2AH,連結(jié)EA,EC. 并取BE的中點K,連結(jié)AK.

于H,  ∴.  ∵BE∥AH,  ∴.
,BE=2AH,  ∴.
,  ∴EC=BD.
∵K為BE的中點,BE=2AH,  ∴BK=AH.
∵BK∥AH,  ∴四邊形AKBH為平行四邊形.
又∵,  ∴四邊形AKBH為矩形.  ∴.
∴AK是BE的垂直平分線.  ∴AB=AE.
∵AB=AE,EC=BD,AC=AD,  ∴.                       
.  ∴.
.  ∵,為銳角,  ∴.
∵AB=AE,  ∴.  ∴.  ∴=2.
=2  解析:
(1)由AC=AD得∠D=∠ACD,由平行四邊形的性質(zhì)得∠D=∠ABC,在△ACD中,由內(nèi)角和定理求解;
(2)如圖2,在△ABC外作等邊△BAE,連接CE,利用旋轉(zhuǎn)法證明△EAC≌△BAD,可證∠EBC=90°,BE=AB=3,在Rt△BCE中,由勾股定理求CE,由三角形全等得BD=CE;
(3)∠DAC=2∠ABC成立,過點B作BE∥AH,并在BE上取BE=2AH,連接EA,EC.并取BE的中點K,連接AK,仿照(2)利用旋轉(zhuǎn)法證明△EAC≌△BAD,利用內(nèi)角和定理證明結(jié)論.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

25、已知△ABC,以AC為邊在△ABC外作等腰△ACD,其中AC=AD.
(1)如圖1,若∠DAC=2∠ABC,AC=BC,四邊形ABCD是平行四邊形,則∠ABC=
45°
;
(2)如圖2,若∠ABC=30°,△ACD是等邊三角形,AB=3,BC=4.求BD的長;
(3)如圖3,若∠ACD為銳角,作AH⊥BC于H.當BD2=4AH2+BC2時,∠DAC=2∠ABC是否成立?若不成立,請說明你的理由;若成立,證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知△ABC,以AC為邊在△ABC外作等腰△ACD,其中AC=AD.
(1)如圖1,若AB=AE,∠DAC=∠EAB=60°,則∠BFC=
120°
120°
;
(2)如圖2,若∠ABC=30°,△ACD是等邊三角形,BC=4,AB=3.求BD的長;
(3)如圖3,若∠ACD為銳角,作AH⊥BC于H,當BD2=4AH2+BC2時,判定∠DAC與∠ABC的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•順義區(qū)一模)如圖,已知△ABC,以AC為直徑的⊙O交AB于點D,點E為
AD
的中點,連結(jié)CE交AB于點F,且BF=BC.
(1)判斷直線BC與⊙O的位置關(guān)系,并證明你的結(jié)論;
(2)若⊙O的半徑為2,cosB=
3
5
,求CE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知△ABC,以AC為邊在△ABC外作等腰△ACD,其中AC=AD.
(1)如圖1,若∠DAC=2∠ABC,△ACB≌△DAC,則∠ABC=
45
45
°;
(2)如圖2,若∠ABC=30°,△ACD是等邊三角形,AB=3,BC=4.求BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知△ABC,以AC為邊在△ABC外作等腰△ACD,其中AC=AD.
(1)如圖1,若∠DAC=2∠ABC,AC=BC,AD∥BC,則∠ABC=
45°
45°

(2)如圖2,以A為頂點AB為邊在△ABC外作∠BAM=60°,若∠ABC=30°,△ACD是等邊三角形,AB=3,BC=4.求BD的長.

查看答案和解析>>

同步練習(xí)冊答案