【題目】如圖,正方形ABCD的面積為12,△ABC是等邊三角形,點(diǎn)E在正方形ABCD內(nèi),對(duì)角線(xiàn)AC上有一點(diǎn)P使PE+PD的和最小,這個(gè)最小值為( )

A. B. C. 3 D.

【答案】A

【解析】由于點(diǎn)BD關(guān)于AC對(duì)稱(chēng),所以連接BE,與AC的交點(diǎn)即為P點(diǎn).此時(shí)PD+PE=BE最小,而BE是等邊△ABE的邊,BE=AB,由正方形ABCD的面積為12,可求出AB的長(zhǎng),從而得出結(jié)果.

解答:解:設(shè)BEAC交于點(diǎn)FP’),連接BD,

點(diǎn)BD關(guān)于AC對(duì)稱(chēng),

∴P’D=P’B,

∴P’D+P’E=P’B+P’E=BE最。

PACBE的交點(diǎn)上時(shí),PD+PE最小,為BE的長(zhǎng)度;

正方形ABCD的面積為12

∴AB=

∵△ABE是等邊三角形,

∴BE=AB=

故所求最小值為

故答案為:A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,ABCD,∠BCD=90°,AB=AD=10cmBC=8cm,點(diǎn)P從點(diǎn)A出發(fā),以每秒2cm的速度沿線(xiàn)段AB向點(diǎn)B方向運(yùn)動(dòng),點(diǎn)Q從點(diǎn)D出發(fā),以每秒3cm的速度沿線(xiàn)段DC向點(diǎn)C運(yùn)動(dòng),已知?jiǎng)狱c(diǎn)P、Q同時(shí)出發(fā),點(diǎn)P到達(dá)B點(diǎn)或點(diǎn)Q到達(dá)C點(diǎn)時(shí),P、Q運(yùn)動(dòng)停止,設(shè)運(yùn)動(dòng)時(shí)間為t ().

(1)CD的長(zhǎng);

(2)當(dāng)四邊形PBQD為平行四邊形時(shí),求t的值;

(3)在點(diǎn)P、點(diǎn)Q的運(yùn)動(dòng)過(guò)程中,是否存在某一時(shí)刻,使得PQAB?若存在,請(qǐng)求出t的值并說(shuō)明理由;若不存在,請(qǐng)說(shuō)明理

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖像與反比例函數(shù)的圖像交于第一、三象限內(nèi)的兩點(diǎn),與軸交于點(diǎn),點(diǎn)軸負(fù)半軸上,,且四邊形是平行四邊形,點(diǎn)的縱坐標(biāo)為.

(1)求該反比例函數(shù)和一次函數(shù)的表達(dá)式;

(2)連接,求的面積;

(3)直接寫(xiě)出關(guān)于的不等式的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】A、B兩地相距64 km,甲從A地出發(fā),每小時(shí)行14 km,乙從B地出發(fā),每小時(shí)行18 km.

(1)若兩人同時(shí)出發(fā)相向而行,則需經(jīng)過(guò)幾小時(shí)兩人相遇?

(2)若兩人同時(shí)出發(fā)相向而行,則需經(jīng)過(guò)幾小時(shí)兩人相距16 km?

(3)若甲在前,乙在后,兩人同時(shí)同向而行,則幾小時(shí)后乙超過(guò)甲10 km?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形ABCD的對(duì)角線(xiàn)AC、BD的長(zhǎng)分別是6cm、8cm,AE⊥BC于點(diǎn)E,則AE的長(zhǎng)是(
A. cm
B. cm
C. cm
D.5 cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知∠AOB內(nèi)部有三條射線(xiàn),其中OE平分角∠BOC,OF平分∠AOC.

(1)如圖1,若∠AOB=120°,∠AOC=30°,求∠EOF的度數(shù)?

(2)如圖2,若∠AOB=α,求∠EOF的度數(shù),(用含α的式子表示)

(3)若將題中的“平分”的條件改為“∠EOB=∠COB,∠COF=∠COA,且∠AOB=α,求∠EOF的度數(shù)(用含α的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:

(1) (2)

(3)

【答案】(1) ;(2) ;(3) .

【解析】1)先化成最簡(jiǎn)二次根式,再合并同類(lèi)二次根式即可;

(2)先算乘法和除法,再合并同類(lèi)項(xiàng)或同類(lèi)二次根式即可;

(3)第一項(xiàng)根據(jù)平方差公式計(jì)算,第二項(xiàng)根據(jù)完全平方公式計(jì)算,然后合并同類(lèi)項(xiàng)或同類(lèi)二次根式即可;

(1)原式==

(2)原式==

(3)原式==

點(diǎn)睛:本題考查了二次根式的性質(zhì)與化簡(jiǎn),二次根式的混合運(yùn)算,熟練掌握二次根式的運(yùn)算法則是解答本題的關(guān)鍵.

型】解答
結(jié)束】
19

【題目】(1)化簡(jiǎn): (2)解方程:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,AB是⊙O的直徑,C是⊙O上一點(diǎn),OD⊥BC于點(diǎn)D,過(guò)點(diǎn)C作⊙O的切線(xiàn),交OD的延長(zhǎng)線(xiàn)于點(diǎn)E,連接BE.
(1)求證:BE與⊙O相切;
(2)連接AD并延長(zhǎng)交BE于點(diǎn)F,若OB=9,sin∠ABC= ,求BF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某漁船在海面上朝正西方向以20海里/時(shí)勻速航行,在A處觀測(cè)到燈塔C在北偏西60°方向上,航行1小時(shí)到達(dá)B處,此時(shí)觀察到燈塔C在北偏西30°方向上,若該船繼續(xù)向西航行至離燈塔距離最近的位置,求此時(shí)漁船到燈塔的距離(結(jié)果精確到1海里,參考數(shù)據(jù): ≈1.732)

查看答案和解析>>

同步練習(xí)冊(cè)答案