如圖甲,正方形被劃分成16個全等的三角形,將其中若干個三角形涂黑,且滿足下列條件:
(1)涂黑部分的面積是原正方形面積的一半;
(2)涂黑部分成軸對稱圖形.
如圖乙是一種涂法,請在圖1~3中分別設(shè)計另外三種涂法.(在所設(shè)計的圖案中,若涂黑部分全等,則認(rèn)為是同一種涂法,如圖乙與圖丙)

【答案】分析:根據(jù)軸對稱圖形的性質(zhì)畫圖,但要注意本題中的要求涂黑部分的面積是原正方形面積的一半;所以圖中一共有16個三角形,那就要涂黑8個,而且這8個要是軸對稱圖形.
解答:解:
點(diǎn)評:本題主要考查了軸對稱圖形的性質(zhì),及通過將四邊形的轉(zhuǎn)化為三角形來計算面積.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

27、如圖甲,正方形被劃分成16個全等的三角形,將其中若干個三角形涂黑,且滿足下列條件:
(1)涂黑部分的面積是原正方形面積的一半;
(2)涂黑部分成軸對稱圖形.
如圖乙是一種涂法,請在圖1~3中分別設(shè)計另外三種涂法.(在所設(shè)計的圖案中,若涂黑部分全等,則認(rèn)為是同一種涂法,如圖乙與圖丙)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第23章《旋轉(zhuǎn)》中考題集(15):23.3 課題學(xué)習(xí) 圖案設(shè)計(解析版) 題型:解答題

如圖甲,正方形被劃分成16個全等的三角形,將其中若干個三角形涂黑,且滿足下列條件:
(1)涂黑部分的面積是原正方形面積的一半;
(2)涂黑部分成軸對稱圖形.
如圖乙是一種涂法,請在圖1~3中分別設(shè)計另外三種涂法.(在所設(shè)計的圖案中,若涂黑部分全等,則認(rèn)為是同一種涂法,如圖乙與圖丙)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第23章《旋轉(zhuǎn)》?碱}集(11):23.3 課題學(xué)習(xí) 圖案設(shè)計(解析版) 題型:解答題

如圖甲,正方形被劃分成16個全等的三角形,將其中若干個三角形涂黑,且滿足下列條件:
(1)涂黑部分的面積是原正方形面積的一半;
(2)涂黑部分成軸對稱圖形.
如圖乙是一種涂法,請在圖1~3中分別設(shè)計另外三種涂法.(在所設(shè)計的圖案中,若涂黑部分全等,則認(rèn)為是同一種涂法,如圖乙與圖丙)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年全國中考數(shù)學(xué)試題匯編《圖形的對稱》(04)(解析版) 題型:解答題

(2007•紹興)如圖甲,正方形被劃分成16個全等的三角形,將其中若干個三角形涂黑,且滿足下列條件:
(1)涂黑部分的面積是原正方形面積的一半;
(2)涂黑部分成軸對稱圖形.
如圖乙是一種涂法,請在圖1~3中分別設(shè)計另外三種涂法.(在所設(shè)計的圖案中,若涂黑部分全等,則認(rèn)為是同一種涂法,如圖乙與圖丙)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年浙江省紹興市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2007•紹興)如圖甲,正方形被劃分成16個全等的三角形,將其中若干個三角形涂黑,且滿足下列條件:
(1)涂黑部分的面積是原正方形面積的一半;
(2)涂黑部分成軸對稱圖形.
如圖乙是一種涂法,請在圖1~3中分別設(shè)計另外三種涂法.(在所設(shè)計的圖案中,若涂黑部分全等,則認(rèn)為是同一種涂法,如圖乙與圖丙)

查看答案和解析>>

同步練習(xí)冊答案