【題目】如圖,已知拋物線x軸交于點A、B(點A位于點B的左側(cè)),與y軸交于點C,CDx軸交拋物線于點D,M為拋物線的頂點.

1)求點A、BC的坐標(biāo);

2)設(shè)動點N(-2n),求使MNBN的值最小時n的值;

3P是拋物線上一點,請你探究:是否存在點P,使以P、AB為頂點的三角形與△ABD相似,(△PAB與△ABD不重合)?若存在,求出點P的坐標(biāo);若不存在,請說明理由.

【答案】1;(2;(3)存在,

【解析】

1)令y=0可求得點A、點B的橫坐標(biāo),令x=0可求得點C的縱坐標(biāo);
2)根據(jù)兩點之間線段最短作M點關(guān)于直線x=-2的對稱點M′,當(dāng)N-2,N)在直線M′B上時,MN+BN的值最。
3)需要分類討論:△PAB∽△ABD、△PAB∽△ABD,根據(jù)相似三角形的性質(zhì)求得PB的長度,然后可求得點P的坐標(biāo).

1)令y=0x1=-2x2=4,
∴點A-2,0)、B4,0
x=0y=-
∴點C0,-
2)將x=1代入拋物線的解析式得y=-
∴點M的坐標(biāo)為(1,-
∴點M關(guān)于直線x=-2的對稱點M′的坐標(biāo)為(-5,
設(shè)直線M′B的解析式為y=kx+b
將點M′B的坐標(biāo)代入得:
解得: ,
所以直線M′B的解析式為y=
x=-2代入得:y=- ,
所以n=-
3)過點DDEBA,垂足為E

由勾股定理得:
AD= ,
如下圖,①當(dāng)P1AB∽△ADB時,

P1B=6
過點P1P1M1AB,垂足為M1

解得:P1M1=6,

解得:BM1=12
∴點P1的坐標(biāo)為(-86)或(126).
∵點P1不在拋物線上,所以此種情況不存在;
②當(dāng)△P2AB∽△BDA時,
P2B=6過點P2P2M2AB,垂足為M2

P2M2=2

M2B=8
∴點P2的坐標(biāo)為(-42
x=-4代入拋物線的解析式得:y=2,
∴點P2在拋物線上.
由拋物線的對稱性可知:點P2與點P4關(guān)于直線x=1對稱,
P4的坐標(biāo)為(62),
當(dāng)點P3位于點C處時,兩三角形全等,所以點P3的坐標(biāo)為(0,-),
綜上所述點P的坐標(biāo)為:(-4,2)或(6,2)或(0,-)時,以P、A、B為頂點的三角形與△ABD相似.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線l1:y=﹣x與反比例函數(shù)y=的圖象交于A,B兩點(點A在點B左側(cè)),已知A點的縱坐標(biāo)是2:

(1)求反比例函數(shù)的表達式;

(2)將直線l1:y=﹣x向上平移后的直線l2與反比例函數(shù)y=在第二象限內(nèi)交于點C,如果△ABC的面積為30,求平移后的直線l2的函數(shù)表達式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°

(1)請用尺規(guī)作圖法,作∠ACB的平分線CD,交AB于點D;(不要求寫作法,保留作圖痕跡)

(2)(1)的條件下,過點D分別作 DEAC于點E,DFBC于點F.求證:四邊形CEDF是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩個工程隊共同承擔(dān)一項筑路任務(wù),甲隊單獨施工完成此項任務(wù)比乙隊單獨施工完成此項任務(wù)多用10天,且甲隊單獨施工45天和乙隊單獨施工30天的工作量相同.

(1)甲、乙兩隊單獨完成此項任務(wù)各需多少天?

(2)若甲、乙兩隊共同工作了3天后,乙隊因設(shè)備檢修停止施工,由甲隊繼續(xù)施工,為了不影響工程進度,甲隊的工作效率提高到原來的2倍,要使甲隊總的工作量不少于乙隊的工作量的2倍,那么甲隊至少再單獨施工多少天?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某文具店購進一批紀(jì)念冊,每本進價為20元,出于營銷考慮,要求每本紀(jì)念冊的售價不低于20元且不高于28元,在銷售過程中發(fā)現(xiàn)該紀(jì)念冊每周的銷售量y(本)與每本紀(jì)念冊的售價x(元)之間滿足一次函數(shù)關(guān)系:當(dāng)銷售單價為22元時,銷售量為36本;當(dāng)銷售單價為24元時,銷售量為32本.

(1)求出y與x的函數(shù)關(guān)系式;

(2)當(dāng)文具店每周銷售這種紀(jì)念冊獲得150元的利潤時,每本紀(jì)念冊的銷售單價是多少元?

(3)設(shè)該文具店每周銷售這種紀(jì)念冊所獲得的利潤為w元,將該紀(jì)念冊銷售單價定為多少元時,才能使文具店銷售該紀(jì)念冊所獲利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】美化城市,改善人們的居住環(huán)境已成為城市建設(shè)的一項重要內(nèi)容.某市城區(qū)近幾年來,通過拆遷舊房,植草,栽樹,修建公園等措施,使城區(qū)綠地面積不斷增加(如圖所示)

1)根據(jù)圖中所提供的信息,回答下列問題:2001年底的綠地面積為  公頃,比2000年底增加了 公頃;在1999年,2000年,2001年這三年中,綠地面積增加最多的是 年;

2)為滿足城市發(fā)展的需要,計劃到2003年底使城區(qū)綠地總面積達到72.6公頃,試求今明兩年綠地面積的年平均增長率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù),為常數(shù)).

1)當(dāng),時,求二次函數(shù)的最小值;

2)當(dāng)時,若在函數(shù)值的情況下,只有一個自變量的值與其對應(yīng),求此時二次函數(shù)的解析式;

3)當(dāng)時,若在自變量的值滿足的情況下,與其對應(yīng)的函數(shù)值的最小值為21,求此時二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在Rt△ABC中,AB=BC;在Rt△ADE中,AD=DE;連結(jié)EC,取EC的中點M,連結(jié)DMBM

1)若點D在邊AC上,點E在邊AB上且與點B不重合,如圖①,

求證:BM=DMBM⊥DM;

2)如果將圖①中的△ADE繞點A逆時針旋轉(zhuǎn)小于45°的角,如圖②,那么(1)中的結(jié)論是否仍成立?如果不成立,請舉出反例;如果成立,請給予證明.

圖① 圖②

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某水果商販用600元購進了一批水果,上市后銷售非常好,商販又用1400元購進第二批這種水果,所購水果數(shù)量是第一批購進數(shù)量的2倍,但每箱進價多了5元.

1)求該商販第一批購進水果每箱多少元;

2)由于儲存不當(dāng),第二批購進的水果中有10%腐壞,不能售賣,該商販將兩批水果按同一價格全部銷售完畢后獲利不低于800元,求每箱水果的售價至少是多少元?

查看答案和解析>>

同步練習(xí)冊答案