【題目】如圖,⊙ 的圓心 在反比例函數(shù) 的圖像上,且與 軸、 軸相切于點(diǎn) 、 ,一次函數(shù) 的圖像經(jīng)過點(diǎn) ,且與 軸交于點(diǎn) ,與⊙ 的另一個(gè)交點(diǎn)為點(diǎn) .
(1)求 的值及點(diǎn) 的坐標(biāo);
(2)求 長(zhǎng)及 的大;
(3)若將⊙ 沿 軸上下平移,使其與 軸及直線 均相切,求平移的方向及平移的距離.
【答案】
(1)解:如圖1中,連接AC、AB.
∵⊙A與x軸、y軸相切于點(diǎn)B、C,
∴AC⊥OC,AB⊥OB,AC=AB,四邊形ABOC是正方形,設(shè)A(m,m),
∵點(diǎn)A在y= 上,
∴m2=3,∵m>0,
∴點(diǎn)A坐標(biāo)( , ),
∴OC= ,
∴點(diǎn)C坐標(biāo)(0, ),
∵一次函數(shù)y= x+b的圖象經(jīng)過點(diǎn)C,
∴b= ,
∴一次函數(shù)的解析式為y= ,
令y=0得x=-3,∴D(-3,0),b=
(2)解:如圖2中,連接BC、BE,作AM⊥CE于M.
在Rt△DOC中,
∵tan∠CDO= ,
∴∠CDO=30°,
∵AC∥BD,
∴∠ECA=∠CDO=30°,∠CAM=60°,
∵AM⊥CE,
∴∠CAM=∠EAM=60°,
∴∠CAE=120°,
在Rt△AMC中,CM=ACcos30°= ,∴CE=2CM=3,∴∠CBE= ∠CAE=60°
(3)解:如圖3中,
①當(dāng)⊙A″與直線y= 相切于點(diǎn)E,AB與直線CD交于點(diǎn)K,
∵AB∥OC,
∴∠A″KE=∠DKB=∠DCO=60°,在Rt△A″EK中,A″E= ,A″K=A″E÷cos30°=2,在Rt△CKA中,AK=CAtan30°=1,
∴AA″=A″K+AK=1+2=3,
∴⊙A向上平移3的單位⊙A與y軸及直線y= 均相切.②同理可得⊙A向下平移1個(gè)單位⊙A與y軸及直線y= 均相切
【解析】(1)由⊙A與x軸、y軸相切于點(diǎn)B、C,得到四邊形ABOC是正方形,由點(diǎn)A在反比例函數(shù)圖像上,得到點(diǎn)A的坐標(biāo),求出OC的值,得到點(diǎn)C的坐標(biāo),由一次函數(shù)的圖象經(jīng)過點(diǎn)C,得到一次函數(shù)的解析式,得到點(diǎn)D的坐標(biāo),
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=﹣x+與x軸、y軸分別交于點(diǎn)A、B,在坐標(biāo)軸上找點(diǎn)P,使△ABP為等腰三角形,則點(diǎn)P的個(gè)數(shù)為( )
A. 2B. 4C. 6D. 8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,在矩形ABCD中,對(duì)角線AC與BD相交于點(diǎn)O,過點(diǎn)O作直線EF⊥BD,且交AD于點(diǎn)E,交BC于點(diǎn)F,連接BE,DF,且BE平分∠ABD.
①求證:四邊形BFDE是菱形;
②直接寫出∠EBF的度數(shù).
(2)把(1)中菱形BFDE進(jìn)行分離研究,如圖2,G,I分別在BF,BE邊上,且BG=BI,連接GD,H為GD的中點(diǎn),連接FH,并延長(zhǎng)FH交ED于點(diǎn)J,連接IJ,IH,IF,IG.試探究線段IH與FH之間滿足的關(guān)系,并說明理由;
(3)把(1)中矩形ABCD進(jìn)行特殊化探究,如圖3,矩形ABCD滿足AB=AD時(shí),點(diǎn)E是對(duì)角線AC上一點(diǎn),連接DE,作EF⊥DE,垂足為點(diǎn)E,交AB于點(diǎn)F,連接DF,交AC于點(diǎn)G.請(qǐng)直接寫出線段AG,GE,EC三者之間滿足的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,網(wǎng)格中每個(gè)小正方形邊長(zhǎng)為1,△ABC的頂點(diǎn)都在格點(diǎn)上.將△ABC向左平移2格,再向上平移3格,得到△A′B′C′.
(1)請(qǐng)?jiān)趫D中畫出平移后的△A′B′C′;
(2)畫出平移后的△A′B′C′的中線B′D′
(3)若連接BB′,CC′,則這兩條線段的關(guān)系是________
(4)△ABC在整個(gè)平移過程中線段AB 掃過的面積為________
(5)若△ABC與△ABE面積相等,則圖中滿足條件且異于點(diǎn)C的格點(diǎn)E共有______個(gè)
(注:格點(diǎn)指網(wǎng)格線的交點(diǎn))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若二次函數(shù) 的圖像記為 ,其頂點(diǎn)為 ,二次函數(shù) 的圖像記為 ,其頂點(diǎn)為 ,且滿足點(diǎn) 在 上,點(diǎn) 在 上,則稱這兩個(gè)二次函數(shù)互為“伴侶二次函數(shù)”.
(1)寫出二次函數(shù) 的一個(gè)“伴侶二次函數(shù)”;
(2)設(shè)二次函數(shù) 與 軸的交點(diǎn)為 ,求以點(diǎn) 為頂點(diǎn)的二次函數(shù) 的“伴侶二次函數(shù)”;
(3)若二次函數(shù) 與其“伴侶二次函數(shù)”的頂點(diǎn)不重合,試求該“伴侶二次函數(shù)”的二次項(xiàng)系數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一場(chǎng)活動(dòng)中活動(dòng)主辦方為了獎(jiǎng)勵(lì)活動(dòng)中取得了好成績(jī)的參賽選手,計(jì)劃購(gòu)買共100件的甲、乙兩紀(jì)念品發(fā)放其中甲種紀(jì)念品每件售價(jià)120元,乙種紀(jì)念品每件售價(jià)80元,
(1)如果購(gòu)買甲、乙兩種紀(jì)念品一共花費(fèi)了9600元,求購(gòu)買甲、乙兩種紀(jì)念品各是多少件?
(2)設(shè)購(gòu)買甲種紀(jì)念品m件,如果購(gòu)買乙種紀(jì)念品的件數(shù)不超過甲種紀(jì)念品的數(shù)量的2倍,并且總費(fèi)用不超過9400元.問組委會(huì)購(gòu)買甲、乙兩種紀(jì)念品共有幾種方案?哪一種方案所需總費(fèi)用最少?最少總費(fèi)用是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】重慶八中的老師工作很忙,但初一年級(jí)很多數(shù)學(xué)老師仍然堅(jiān)持鍛煉身體,比如張老師就經(jīng)常堅(jiān)持飯后走一走.某天晚飯后他從學(xué)校慢步到附近的中央公園,在公園里休息了一會(huì)后,因?qū)W校有事,快步趕回學(xué)校.下面能反映當(dāng)天張老師離學(xué)校的距離y與時(shí)間x的關(guān)系的大致圖象是( 。
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列解方程組的部分過程,回答下列問題
解方程組
現(xiàn)有兩位同學(xué)的解法如下:
解法一;由①,得x=2y+5,③
把③代入②,得3(2y+5)﹣2y=3.……
解法二:①﹣②,得﹣2x=2.……
(1)解法一使用的具體方法是________,解法二使用的具體方法是______,以上兩種方法的共同點(diǎn)是________.
(2)請(qǐng)你任選一種解法,把完整的解題過程寫出來
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知中,,,點(diǎn)D為直線BC上的一動(dòng)點(diǎn)點(diǎn)D不與點(diǎn)B、C重合,以AD為邊作,使,,連接CE.
發(fā)現(xiàn)問題:
如圖1,當(dāng)點(diǎn)D在邊BC上時(shí),
請(qǐng)寫出BD和CE之間的位置關(guān)系為______,并猜想BC和CE、CD之間的數(shù)量關(guān)系:______.
嘗試探究:
如圖2,當(dāng)點(diǎn)D在邊BC的延長(zhǎng)線上且其他條件不變時(shí),中BD和CE之間的位置關(guān)系、BC和CE、CD之間的數(shù)量關(guān)系是否成立?若成立,請(qǐng)證明;若不成立,請(qǐng)寫出新的數(shù)量關(guān)系,說明理由;
拓展延伸:
如圖3,當(dāng)點(diǎn)D在邊CB的延長(zhǎng)線上且其他條件不變時(shí),若,,求線段ED的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com