【題目】已知△ABC中, , ,△CDE中, ,CD=DE=5,
連接接BE,取BE中點F,連接AF、DF.
(1)如圖1,若三點共線, 為中點.
①直接指出與的關系______________;
②直接指出的長度______________;
(2)將圖(1)中的△CDE繞點逆時針旋轉(如圖2, ),試確定與的關系,并說明理由;
(3)在(2)中,若,請直接指出點所經歷的路徑長.
圖1 圖2
【答案】(1)①, ,②;(2), ,理由見解析;(3)或
【解析】試題分析:(1)①如圖,過點F M⊥CD于M,FN⊥AC交CA的延長線于點N,根據已知條件易證四邊形FMCN為正方形,可得FN=FM,再證△FNA≌△FMD,即可得∠NFA=∠DFM,DF=AF,所以∠NFA+∠AFM=∠DFM+∠AFM=∠DFA=90°,即可證得;②根據勾股定理求得BC=,EC=5 ,因為中點,F為BE的中點,可得CH=BH=,EB=5-=,EF=BF= ,所以FH=BF+BH=;
(2) , ,延長至使,連接,延長交于, , , ,再證得,由,CD=DE,根據SAS判定, , , ,根據等腰直角三角形的性質可得, ; (3)如圖,當旋轉或時, ,AD=7,點經歷的路徑長為或.
試題解析:
(1)(1)①,
②
(2)結論: , 理由如下:
延長至使,連接,延長交于
, , ,
,
, ,
, , ,
,
(3)旋轉或時, ,AD=7,點經歷的路徑長為或
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線與坐標軸分別交于點A、點B、點C,并且∠ACB=90,AB=10.
(1)求證:△OAC∽△OCB;
(2)求該拋物線的解析式;
(3)若點P是(2)中拋物線對稱軸上的一個動點,是否存在點P使得△PAC為等腰三角形,若存在,請直接寫出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知在平面直角坐標系xOy中,O為坐標原點,線段AB的兩個端點A(0,2),B(1,0)分別在y軸和x軸的正半軸上,點C為線段AB的中點,現將線段BA繞點B按順時針方向旋轉90°得到線段BD,拋物線y=ax2+bx+c(a≠0)經過點D.
(1)如圖1,若該拋物線經過原點O,且a=﹣.
①求點D的坐標及該拋物線的解析式;
②連結CD,問:在拋物線上是否存在點P,使得∠POB與∠BCD互余?若存在,請求出所有滿足條件的點P的坐標,若不存在,請說明理由;
(2)如圖2,若該拋物線y=ax2+bx+c(a≠0)經過點E(1,1),點Q在拋物線上,且滿足∠QOB與∠BCD互余.若符合條件的Q點的個數是3個,請直接寫出a的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】北京第一條地鐵線路于1971年1月15日正式開通運營.截至2017年1月,北京地鐵共有19條運營線路,覆蓋北京市11個轄區(qū).據統(tǒng)計,2017 年地鐵每小時客運量是2002年地鐵每小時客運量的4倍,2017年客運240萬人所用的時間比2002年客運240萬人所用的時間少30小時,求2017年地鐵每小時的客運量?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】三張形狀、大小相同但畫面不同的風景圖片,都按同樣的方式剪成相同的三段,然后將上、中、下三段分別混合洗勻,從三堆圖片中隨機各抽出一張, 求這三張圖片恰好組成一張完整風景圖片的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在□ABCD中,對角線AC、BD相交于點O,AB⊥AC,AB=3cm,BC=5cm.點P從A點出發(fā)沿AD方向勻速運動,速度為1cm/s.連結PO并延長交BC于點Q,設運動時間為t(0<t<5).
(1)當t為何值時,四邊形ABQP是平行四邊形?
(2)設四邊形OQCD的面積為y(cm2),求y與t之間的函數關系式;
(3)是否存在某一時刻t,使點O在線段AP的垂直平分線上?若存在,求出t的值;若不存在,請說明理由.
備用圖
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小紅星期天從家里出發(fā)騎車去舅舅家做客,當她騎了一段路時,想起要買個禮物送給表弟,于是又折回到剛經過的一家商店,買好禮物后又繼續(xù)騎車去舅舅家,以下是她本次去舅舅家所用的時間與路程的關系式示意圖.根據圖中提供的信息回答下列問題:
(1)小紅家到舅舅家的路程是______米,小紅在商店停留了______分鐘;
(2)在整個去舅舅家的途中哪個時間段小紅騎車速度最快,最快的速度是多少米/分
(3)本次去舅舅家的行程中,小紅一共行駛了多少米?一共用了多少分鐘?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知點E在△ABC的邊AB上,∠C=90°,∠BAC的平分線交BC于點D,且D在以AE為直徑的⊙O上.
(1)求證:BC是⊙O的切線;
(2)已知∠B=30°,CD=4,求線段AB的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形ABCD的一邊BC與⊙O相切于G,DC=6,且對角線BD經過圓心O,AD交⊙O于點E,連接BE,BE恰好是⊙O的切線,已知點P在對角線BD上運動,若以B、P、G三點構成的三角形與△BED相似,則BP=______.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com