【題目】如圖,以邊長為20cm的正三角形紙板的各頂點為端點,在各邊上分別截取4cm長的六條線段,過截得的六個端點作所在邊的垂線,形成三個有兩個直角的四邊形.把它們沿圖中 虛線剪掉,用剩下的紙板折成一個底為正三角形的無蓋柱形盒子,則它的容積為________cm3

【答案】144

【解析】解:如圖由題意得:ABC為等邊三角形,OPQ為等邊三角形,AD=AK=BE=BF=CG=CH=4cm,∴∠A=∠B=∠C=60°,AB=BC=AC,∠POQ=60°,∴∠ADO=∠AKO=90°.

連結(jié)AO,作QMOPM.RtAOD中,OAD=∠OAK=30°,∴OD=AD=cm.∵PQ=OP=DE=20﹣2×4=12(cm),∴QM=OPsin60°=12×=cm),∴無蓋柱形盒子的容積==144(cm3);故答案為:144.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在8×8的正方形網(wǎng)格中,△ABC的頂點和線段EF的端點都在小正方形的頂點上,這樣的三角形叫做格點三角形.

1)填空:∠ABC   ;

2)請你在圖中找出所有滿足條件的點D(用黑圓點表示,標(biāo)上D),使得以DE、F為頂點的格點三角形與△ABC全等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是2015年12月月歷.

(1)如圖,用一正方形框在表中任意框往4個數(shù),記左上角的一個數(shù)為x,則另三個數(shù)用含x的式子表示出來,從小到大依次是 , ,

(2)在表中框住四個數(shù)之和最小記為a1,和最大記為a2,則a1+a2=

(3)當(dāng)(1)中被框住的4個數(shù)之和等于76時,x的值為多少?

(4)在(1)中能否框住這樣的4個數(shù),它們的和等于92?若能,則求出x的值;若不能,則說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰三角形ABC的底邊BC長為4,面積是16,腰AC的垂直平分線EF分別交ACAB邊于E,F若點DBC邊的中點,點M為線段EF上一動點,則周長的最小值為  

A. 6 B. 8 C. 10 D. 12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC 中,∠BAC=120°,點 D BC 上一點,BD 的垂直平分線交 AB 于點E,將△ACD 沿 AD 折疊,點 C 恰好與點 E 重合,則∠B 等于_______°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,AC的垂直平分線DEABC的角平分線相交于點D,垂足為點E,若ABC=72°,求ADC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(12分)如圖所示是隧道的截面由拋物線和長方形構(gòu)成,長方形的長是12 m,寬是4 m.按照圖中所示的直角坐標(biāo)系,拋物線可以用y=x2+bx+c表示,且拋物線上的點COB的水平距離為3 m,到地面OA的距離為m.

(1)求拋物線的函數(shù)關(guān)系式,并計算出拱頂D到地面OA的距離;

(2)一輛貨運汽車載一長方體集裝箱后高為6m,寬為4m,如果隧道內(nèi)設(shè)雙向車道,那么這輛貨車能否安全通過?

(3)在拋物線型拱壁上需要安裝兩排燈,使它們離地面的高度相等,如果燈離地面的高度不超過8m,那么兩排燈的水平距離最小是多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,下列四個結(jié)論:

①4a+c<0;②m(am+b)+b>a(m≠﹣1);③關(guān)于x的一元二次方程ax2+(b﹣1)x+c=0沒有實數(shù)根;④ak4+bk2<a(k2+1)2+b(k2+1)(k為常數(shù)).其中正確結(jié)論的個數(shù)是( 。

A. 4個 B. 3個 C. 2個 D. 1個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,將一個邊長為a厘米的正方形紙片剪去兩個小矩形,得到圖案,如圖2所示,再將剪下的兩個小矩形拼成一個新的矩形,如圖3所示:

(1)列式表示新矩形的周長為______厘米(化到最簡形式)

(2)如果正方形紙片的邊長為8厘米,剪去的小矩形的寬為1厘米,那么所得圖形的周長為______厘米.

查看答案和解析>>

同步練習(xí)冊答案