精英家教網 > 初中數學 > 題目詳情
25、如圖,△ABC的邊AB、AC上分別有定點M、N,請在BC邊上找一點P,使得△PMN的周長最短. (寫出作法,保留作圖痕跡)
分析:作點N關于BC的對稱點N′,連接MN′交BC于點P,由兩點之間線段最短可知P點即為所求點.
解答:解:①作點N關于BC的對稱點N′,連接MN′交BC于點P,
②由對稱的性質可知PN=PN′,故PN+PM=MN′,
③由兩點之間線段最短可知,△PMN的最短周長即為MN′+MN.
點評:本題考查的是最短線路問題,根據兩點之間線段最短的知識作出N的對稱點是解答此題的關鍵.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網如圖,△ABC的邊AC、AB上的中線BD、CE相交于點O,M、N分別是BO、CO的中點,順次連接點D、E、M、N.
(1)求證:四邊形DEMN是平行四邊形;
(2)當△ABC滿足什么條件時,四邊形DEMN是矩形,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,△ABC的邊BC的垂直平分線MN交AC于D,若AC=6cm,AB=4cm,則△ADB的周長=
10
10
cm.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖:△ABC的邊AB的垂直平分線分別交BC、AB于M、N,△ACM的周長為10cm,AN=4cm.則△ABC的周長是( 。ヽm.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,△ABC的邊BC上的高為AD,且BC=9cm,AD=2cm,AB=6cm.
(1)畫出AB邊上的高CE;
(2)求CE的長.

查看答案和解析>>

同步練習冊答案