如圖,在平面直角坐標(biāo)系中,有點(diǎn)M(0,-3),⊙M與x軸交于點(diǎn)A、B(點(diǎn)A在點(diǎn) B的左側(cè)),與y軸交于點(diǎn)C、E;拋物線y=ax2+bx-8(a≠0)經(jīng)過(guò)A、C兩點(diǎn),點(diǎn)D是拋物線的頂點(diǎn);
(1)求點(diǎn)A、B、C的坐標(biāo);
(2)試探究:當(dāng)a取何值時(shí),拋物線y=ax2+bx-8(a≠0)的對(duì)稱軸與⊙M相切?
(3)當(dāng)點(diǎn)D在第四象限內(nèi)時(shí),連接BC、BD,且tan∠CBD=
12

①試確定a的值;
②設(shè)此時(shí)的拋物線與x軸的另一個(gè)交點(diǎn)是點(diǎn)F,在拋物線的對(duì)稱軸上找一點(diǎn)T,使|TM-TF|達(dá)到最大,請(qǐng)求出最大值與點(diǎn)T的坐標(biāo).
精英家教網(wǎng)
分析:(1)連接MA,分別求得OC、OM、MC、MA后即可得到點(diǎn)A、B、C的坐標(biāo);
(2)將點(diǎn)A的坐標(biāo)代入拋物線的解析式,并表示出其對(duì)稱軸,根據(jù)切線的性質(zhì)得到a的值即可;
(3)①利用兩角的正切值相等可以得到兩個(gè)角相等,并利用BD⊥AB得到-2+
1
a
=4并求得a的值即可;
②由對(duì)稱性知拋物線與x軸的另一個(gè)交點(diǎn)F的坐標(biāo)是(12,0),再由對(duì)稱性,TF=TA,則|TM-TF|=|TM-TA|≤MA,因此,當(dāng)點(diǎn)T是MA的延長(zhǎng)線與對(duì)稱軸的交點(diǎn)時(shí),|TM-TF|達(dá)到最大,最大值是5;據(jù)此可以求得點(diǎn)T的坐標(biāo).
解答:解:(1)連接MA,由題意得:OC=8,OM=3,MC=8-3=5,則MA=5,
∴OA=OB=4,
∴點(diǎn)A、點(diǎn)B、點(diǎn)C的坐標(biāo)分別是(-4,0)、(4,0)、(0,-8),…(6分)

(2)∵拋物線y=ax2+bx-8(a≠0)經(jīng)過(guò)點(diǎn)A,精英家教網(wǎng)
∴0=16a-4b-8,
∴b=4a-2;
此時(shí),y=ax2+(4a-2)x-8(a≠0),
它的對(duì)稱軸是直線:x=-
4a-2
2a
=-2+
1
a
;
要使拋物線的對(duì)稱軸與⊙M相切,則-2+
1
a
=±5,
當(dāng)a=
1
7
或a=-
1
3
時(shí),拋物線的對(duì)稱軸與⊙M相切;…(4分)

(3)①在Rt△BOC中,tan∠BCO=
4
8
=
1
2
,又tan∠CBD=
1
2
,
則∠BCO=∠CBD,
∴BD∥OC,
又∵OC⊥AB,
∴BD⊥AB,
即得:-2+
1
a
=4,
∴a=
1
6
;…(2分)
②如答圖,由對(duì)稱性,此時(shí),拋物線與x軸的另一個(gè)交點(diǎn)F的坐標(biāo)是(12,0),
由三角形的兩邊之差小于第三邊的性質(zhì)可知:|TM-TF|≤MF,要使|TM-TF|達(dá)到最大,
則點(diǎn)T應(yīng)在線段MF的延長(zhǎng)線,但不可能同時(shí)在拋物線的對(duì)稱軸上,
故達(dá)不到最大值是線段MF的長(zhǎng);
而由對(duì)稱性,TF=TA,則|TM-TF|=|TM-TA|≤MA,
因此,當(dāng)點(diǎn)T是MA的延長(zhǎng)線與對(duì)稱軸的交點(diǎn)時(shí),|TM-TF|達(dá)到最大,最大值是5;
∵BD∥OC,又OA=OB,
∴BT=6,
∴點(diǎn)T的坐標(biāo)是(4,-6);[也可求出MA所在直線的一次函數(shù),再求點(diǎn)T坐標(biāo)]…(2分)
點(diǎn)評(píng):本題是二次函數(shù)的綜合題型,其中涉及到的知識(shí)點(diǎn)有拋物線的頂點(diǎn)公式和三角形的面積求法.在求有關(guān)動(dòng)點(diǎn)問(wèn)題時(shí)要注意分析題意分情況討論結(jié)果.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫(huà)圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個(gè)點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長(zhǎng)為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動(dòng),路徑為O→A→B→C,到達(dá)點(diǎn)C時(shí)停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時(shí),求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時(shí),請(qǐng)寫(xiě)出點(diǎn)P的坐標(biāo)(不要求過(guò)程,只需寫(xiě)出結(jié)果).

查看答案和解析>>

同步練習(xí)冊(cè)答案