點A、B、C在一條直線上,AB=14cm,且AC=9cm,O為AB的中點,求線段OC的長度.

解:如圖所示,
∵AB=14cm,O是AB的中點,
∴AO=7cm.
當點C在線段AB上時,OC=AC-AO=9-7=2(cm);
當點C在線段AB的延長線上時,OC=OA+AC=7+2=9(cm).
分析:分情況考慮:點C在線段AB上或點C在線段AB的反向延長線上.
點評:此題要特別注意考慮點在直線上的不同位置,理解線段的中點的概念.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

如圖,在等腰梯形ABCD中,AB∥DC,∠A=45°,AB=10cm,CD=4cm.等腰直角三角形PMN的斜邊MN=10cm,A點與N點重合,MN和AB在一條直線上,設(shè)等腰梯形ABCD不動,等腰直角三角形PMN沿AB所在直線以1cm/s的速度向右移動,直到點N與點B重合為止.
(1)等腰直角三角形PMN在整個移動過程中與等腰梯形ABCD重疊部分的形狀由
 
形變化為
 
形;
(2)設(shè)當?shù)妊苯侨切蜳MN移動x(s)時,等腰直角三角形PMN與等腰梯形ABCD重疊部分的面積為y(cm2),求y與x之間的函數(shù)關(guān)系式;
(3)當x=4(s)時,求等腰直角三角形PMN與等腰梯形ABCD重疊部分的面積.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖:在等腰梯形ABCD中,AB∥CD,∠A=60°,AB=20cm,CD=8cm.等邊三角形PMN的邊長MN=20cm,A點與N點重合,MN和AB在一條直線上,設(shè)等腰梯形ABCD不動,等邊三角形PMN沿AB所在的直線勻速向右移動,直到點M與點B重合為止.
(1)等邊三角形PMN在整個運動過程中與等腰梯形ABCD重疊部分的形狀由
 
形變?yōu)?!--BA-->
 
形,再變?yōu)?!--BA-->
 
形;
(2)設(shè)等邊三角形移動距離x(cm)時,等邊三角形PMN與等腰梯形ABCD重疊的部分的面積為y,求y與x之間的函數(shù)關(guān)系式.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在等腰梯形ABCD中,AB∥DC,∠A=45°,AB=10cm,CD=4cm.等腰直角三角形PMN的斜邊MN=10cm,A點與N點重合,MN和AB在一條直線上,設(shè)等腰梯形ABCD不動,等腰直角三角形PMN沿AB所在直線以1cm/s的速度向右移動,直到點N與點B重合為止.
(1)等腰直角三角形PMN在整個移動過程中與等腰梯形ABCD重疊部分的形狀由
 
變化為
 

(2)設(shè)當?shù)妊苯侨切蜳MN移動x(s)時,等腰直角三角形PMN與等腰梯形ABCD重疊部分的面積為y(cm2):
①當x=6s時,則y的值是
 
cm2;(直接寫出答案,不必寫出過程)
②求x為何值時,y=4cm2;(要求寫出過程)
③當x=
 
s時,y=15cm2.(直接寫出答案,不必寫出過程)
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在等腰梯形ABCD中,AB∥DC,∠DAB=45°,AB=10cm,CD=4cm.等腰直角三角形PMN的斜邊MN=10cm,A點與N點重合,MN和AB在一條直線上,設(shè)等腰梯形ABCD不動,等腰直角三角形PMN沿AB所在直線以1cm/s的速度向右移動,直到點N與點B重合為止.
(1)等腰直角三角形PMN在整個移動過程中與等腰梯形ABCD重疊部分的形狀由
 
形變化為
 
形;
(2)設(shè)當?shù)妊苯侨切蜳MN移動x(s)時,等腰直角三角形PMN與等腰梯形ABCD重疊部分的面積為y(cm2),求y與x之間的函數(shù)關(guān)系式;
(3)當①x=4(s),②x=8(s)時,求等腰直角三角形PMN與等腰梯形ABCD重疊部分的面積.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)小明家、小亮家、學校在一條直的街道上,平時他倆乘同一校車上學,小明家距學校比小亮家遠,每天小明比小亮早5分鐘乘上校車上學.某日,因小明比每天晚了5分鐘趕不上校車,由爸爸開自家車送小明上學.設(shè)兩車均勻速行駛,小亮乘車時間為x(分),小明與小亮之間的距離為y(km),圖中的折線表示y與x之間的函數(shù)關(guān)系,根據(jù)圖象解決以下問題:
(1)小明和小亮家相距
 
km;
(2)請解釋圖中B點的實際意義;
(3)求線段CD所表示的y與x之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
(4)求校車及自家車的車速(單位:km/小時);
(5)求小明家與學校的距離.

查看答案和解析>>

同步練習冊答案