【題目】如圖,矩形的頂點(diǎn)和分別在軸和軸上,并且, ,反比例函數(shù) (>0)的圖象交于點(diǎn),交于點(diǎn), 一次函數(shù)的圖象經(jīng)過點(diǎn)、,連結(jié), .
(1)點(diǎn)的坐標(biāo)是( ),點(diǎn)的坐標(biāo)是( );
(2)求反比例函數(shù)與一次函數(shù)的解析式;
(3)根據(jù)圖象寫出使得的的取值范圍.
【答案】(1)點(diǎn)M的坐標(biāo)是(4, ),點(diǎn)N的坐標(biāo)是(2,3)
(2)反比例函數(shù)的解析式是,一次函數(shù)的解析式是;
(3)的取值范圍是2<<4.
【解析】試題分析:(1)由, 可得出M點(diǎn)的橫坐標(biāo)和N點(diǎn)的縱坐標(biāo),由由此即可得出M縱坐標(biāo)為,進(jìn)而可求出N的坐標(biāo);
(2)將點(diǎn)M的坐標(biāo)和N的坐標(biāo)代入到中,解方程組即可求出a、b的值,進(jìn)而求得一次函數(shù)的解析式;
(3)由圖象即可求得x的取值范圍.
試題解析:(1)∵,
∴點(diǎn)M的橫坐標(biāo)為4,
由,得×OA×AM=3,
∴AM=,
∴點(diǎn)M的坐標(biāo)是(4, ),
∵,
∴N點(diǎn)的縱坐標(biāo)為3,
由OA×AM=OC×NC,得NC=2,
∴點(diǎn)N的坐標(biāo)是(2,3);
(2)∵點(diǎn)N(2,3)在反比例函數(shù) (x>0)的圖象上,
∴k=2×3=6即反比例函數(shù)的解析式是,
又∵y2=ax+b經(jīng)過點(diǎn)M(4, )、N(2,3)
由此得: 解得
∴一次函數(shù)的解析式是
(3)若<,則的取值范圍是2<<4.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)通過初評決定從甲、乙、丙三個班中推薦一個班為市級先進(jìn)班集體,下表是這三個班的五項(xiàng)素質(zhì)考評得分表:
表1 五項(xiàng)素質(zhì)考評得分表(每項(xiàng)滿分10分)
(1)根據(jù)表1中的信息,請你補(bǔ)全五項(xiàng)成績考評分析表中的數(shù)據(jù):
表2 五項(xiàng)成績考評分析表
(2)參照表2中的數(shù)據(jù),你推薦哪個班為市級先進(jìn)班集體?簡要說明理由.
(3)如果學(xué)校把表1中的行為規(guī)范、學(xué)習(xí)成績、校運(yùn)動會、藝術(shù)獲獎、勞動衛(wèi)生五項(xiàng)考評成績按照3:3:2:1:1的比確定,依照這個成績,應(yīng)推薦哪個班為市級先進(jìn)班集體?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙、丁四人參加訓(xùn)練,近期的10次百米測試平均成績都是13.2秒,方差如表
選手 | 甲 | 乙 | 丙 | 丁 |
方差(秒2) | 0.020 | 0.019 | 0.021 | 0.022 |
則這四人中發(fā)揮最穩(wěn)定的是( 。
A.甲
B.乙
C.丙
D.丁
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果一條直線把一個平面圖形的面積分成相等的兩部分,我們把這條直線稱為這個平面圖形的一條面積等分線.
(1)平行四邊形有_________條面積等分線;
(2)如圖,四邊形ABCD中,AB與CD不平行,AB≠CD, 且S△ABC<S△ACD,過點(diǎn)A畫出四邊形ABCD的面積等 分線,并寫出理由._________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】等式y(tǒng)=ax3+bx+c中,當(dāng)x=0時,y=3;當(dāng)x=﹣1時,y=5;求當(dāng)x=1時,y的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列選項(xiàng)中三條線段能組成三角形的是( )
A.5cm,6cm,13cmB.3cm,3cm,6cmC.4cm,5cm,6cmD.4cm,29cm,11cm
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com