【題目】下面是娜娜設計的“作一個角等于已知角”的尺規(guī)作圖過程.

已知:RTABC

求作:AB上作點D,使∠BCD=A

作法:如圖,以AC為直徑作圓,交ABD,所以點D就是所求作的點;

根據(jù)娜娜設計的作圖過程,完成下面的證明.

證明:∵AC是直徑

∴∠ADC=90°______)(填推理的依據(jù))

即∠ACD+A=90°,

∵∠ACB=90°,

即∠ACD+_______=90°

∴∠BCD=A_______)(填推理的依據(jù)).

【答案】見詳解

【解析】

根據(jù)直徑的性質(zhì)可得∠ADC90°,再利用同角的余角相等即可得證.

證明:∵AC是直徑

∴∠ADC90°直徑所對圓周角為直角

∠ACD∠A90°,

∵∠ACB90°,

∠ACD_∠BCD _90°,

∴∠BCD∠A同角的余角相等).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在O中,半徑OC垂直于弦AB,垂足為點D,點EOC的延長線上,∠EAC=∠BAC

(1)求證:AEO的切線;

(2)AB8cosE,求CD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等腰三角形△ABC中,O為底邊BC的中點,以O為圓心作半圓與AB,AC相切,切點分別為D,E.過半圓上一點F作半圓的切線,分別交ABACM,N.那么的值等于( 。

A.B.C.D.1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】鄂州市化工材料經(jīng)銷公司購進一種化工原料若干千克,價格為每千 克30元物價部門規(guī)定其銷售單價不高于每千克60元,不低于每千克30元經(jīng)市場調(diào)查發(fā)現(xiàn):日銷售量y千克)是銷售單價x元)的一次函數(shù),且當x=60時 ,y=80;x=50時,y=100在銷售過程中,每天還要支付其他費用450元

1)3分)求出y與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍

2)3分)求該公司銷售該原料日獲利w與銷售單價x之間的函數(shù)關(guān)系式

3)4分)當銷售單價為多少元時,該公司日獲利最大?最大獲利是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線yax2+bxa0)過點E80),矩形ABCD的邊AB在線段OE上(點A在點B的左側(cè)),點C、D在拋物線上,∠BAD的平分線AMBC于點M,點NCD的中點,已知OA2,且OAAD13.

1)求拋物線的解析式;

2F、G分別為x軸,y軸上的動點,順次連接M、NG、F構(gòu)成四邊形MNGF,求四邊形MNGF周長的最小值;

3)在x軸下方且在拋物線上是否存在點P,使△ODPOD邊上的高為?若存在,求出點P的坐標;若不存在,請說明理由;

4)矩形ABCD不動,將拋物線向右平移,當平移后的拋物線與矩形的邊有兩個交點K、L,且直線KL平分矩形的面積時,求拋物線平移的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在研究反比例函數(shù)的圖象與性質(zhì)時,我們對函數(shù)解析式進行了深入分析.

首先,確定自變量的取值范圍是全體非零實數(shù),因此函數(shù)圖象會被軸分成兩部分;其次,分析解析式,得到的變化趨勢:當時,隨著值的增大,的值減小,且逐漸接近于零,隨著值的減小,的值會越來越大,由此,可以大致畫出時的部分圖象,如圖所示:

利用同樣的方法,我們可以研究函數(shù)的圖象與性質(zhì).通過分析解析式畫出部分函數(shù)圖象如圖所示.

1)請沿此思路在圖中完善函數(shù)圖象的草圖并標出此函數(shù)圖象上橫坐標為0的點;(畫出網(wǎng)格區(qū)域內(nèi)的部分即可)

2)觀察圖象,寫出該函數(shù)的一條性質(zhì):__________;

3)若關(guān)于的方程有兩個不相等的實數(shù)根,結(jié)合圖象,直接寫出實數(shù)的取值范圍: __________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】己知如圖,平分,當,且時,的度數(shù)為___________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】跳遠運動員李陽對訓練效果進行測試.6次跳遠的成績?nèi)缦拢?/span>7.57.7,7.6,7.7,7.9,7.8(單位:m)這六次成績的平均數(shù)為7.7m,方差為.如果李陽再跳一次,成績?yōu)?/span>7.7m.則李陽這7次跳遠成績的方差_____(填變大、不變變小).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列說法中正確的是(

A.同一平面內(nèi),過一點有且只有一條直線與已知直線平行

B.三張分別畫有菱形、等邊三角形、圓的卡片,從中隨機抽取一張,恰好抽到中心對稱圖形卡片的概率是

C.一組對邊平行,一組對邊相等的四邊形是平行四邊形

D.時,關(guān)于的方程有實數(shù)根

查看答案和解析>>

同步練習冊答案