如圖①,已知拋物線經(jīng)過點A(0,3),B(3,0),C(4,3).
(1)求拋物線的函數(shù)表達(dá)式;
(2)求拋物線的頂點坐標(biāo)和對稱軸;
(3)把拋物線向上平移,使得頂點落在x軸上,直接寫出兩條拋物線、對稱軸和y軸圍成的圖形的面積S(圖②中陰影部分).
解:(1)∵拋物線經(jīng)過點A(0,3),B(3,0),C(4,3),
∴,解得。
∴拋物線的函數(shù)表達(dá)式為。
(2)∵,
∴拋物線的頂點坐標(biāo)為(2,﹣1),對稱軸為直線x=2。
(3)如圖,∵拋物線的頂點坐標(biāo)為(2,﹣1),∴PP′=1。
又由平移的性質(zhì)知,陰影部分的面積等于平行四邊形A′APP′的面積,
而平行四邊形A′APP′的面積=1×2=2。
∴陰影部分的面積=2。
解析試題分析:(1)把點A、B、C代入拋物線解析式利用待定系數(shù)法求解即可。
(2)把拋物線解析式整理成頂點式形式,然后寫出頂點坐標(biāo)與對稱軸即可。
(3)根據(jù)頂點坐標(biāo)求出向上平移的距離,再根據(jù)陰影部分的面積等于平行四邊形的面積,列式進行計算即可得解。
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,拋物線的圖象與x軸交于A、B兩點,與y軸交于C點,已知點B坐標(biāo)為(4,0).
(1)求拋物線的解析式;
(2)判斷△ABC的形狀,說出△ABC外接圓的圓心位置,并求出圓心的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
今年,6月12日為端午節(jié)。在端午節(jié)前夕,三位同學(xué)到某超市調(diào)研一種進價為2元的粽子的銷售情況。請根據(jù)小麗提供的信息,解答小華和小明提出的問題。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
綜合與探究:如圖,拋物線與x軸交于A,B兩點(點B在點A的右側(cè))與y軸交于點C,連接BC,以BC為一邊,點O為對稱中心作菱形BDEC,點P是x軸上的一個動點,設(shè)點P的坐標(biāo)為(m,0),過點P作x軸的垂線l交拋物線于點Q。
(1)求點A,B,C的坐標(biāo)。
(2)當(dāng)點P在線段OB上運動時,直線l分別交BD,BC于點M,N。試探究m為何值時,四邊形CQMD是平行四邊形,此時,請判斷四邊形CQBM的形狀,并說明理由。
(3)當(dāng)點P在線段EB上運動時,是否存在點 Q,使△BDQ為直角三角形,若存在,請直接寫出點Q的坐標(biāo);若不存在,請說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,在等邊△ABC中,AB=3,D、E分別是AB、AC上的點,且DE∥BC,將△ADE沿DE翻折,與梯形BCED重疊的部分記作圖形L.
(1)求△ABC的面積;
(2)設(shè)AD=x,圖形L的面積為y,求y關(guān)于x的函數(shù)解析式;
(3)已知圖形L的頂點均在⊙O上,當(dāng)圖形L的面積最大時,求⊙O的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,在△ABC中,∠C=90°,BC=3,AB=5.點P從點B出發(fā),以每秒1個單位長度沿B→C→A→B的方向運動;點Q從點C出發(fā),以每秒2個單位沿C→A→B方向的運動,到達(dá)點B后立即原速返回,若P、Q兩點同時運動,相遇后同時停止,設(shè)運動時間為t秒.
(1)當(dāng)t= 時,點P與點Q相遇;
(2)在點P從點B到點C的運動過程中,當(dāng)ι為何值時,△PCQ為等腰三角形?
(3)在點Q從點B返回點A的運動過程中,設(shè)△PCQ的面積為s平方單位.
①求s與ι之間的函數(shù)關(guān)系式;
②當(dāng)s最大時,過點P作直線交AB于點D,將△ABC中沿直線PD折疊,使點A落在直線PC上,求折疊后的
△APD與△PCQ重疊部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
某商家獨家銷售具有地方特色的某種商品,每件進價為40元.經(jīng)過市場調(diào)查,一周的銷售量y件與銷售單價x(x≥50)元/件的關(guān)系如下表:
銷售單價x(元/件) | … | 55 | 60 | 70 | 75 | … |
一周的銷售量y(件) | … | 450 | 400 | 300 | 250 | … |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,拋物線與x軸相交于點A、B,與y軸相交于點C,拋物線的對稱軸與x軸相交于點M.P是拋物線在x軸上方的一個動點(點P、M、C不在同一條直線上).分別過點A、B作直線CP的垂線,垂足分別為D、E,連接點MD、ME.
(1)求點A,B的坐標(biāo)(直接寫出結(jié)果),并證明△MDE是等腰三角形;
(2)△MDE能否為等腰直角三角形?若能,求此時點P的坐標(biāo);若不能,說明理由;
(3)若將“P是拋物線在x軸上方的一個動點(點P、M、C不在同一條直線上)”改為“P是拋物線在x軸下方的一個動點”,其他條件不變,△MDE能否為等腰直角三角形?若能,求此時點P的坐標(biāo)(直接寫出結(jié)果);若不能,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知:直線過拋物線的頂點P,如圖所示.
(1)頂點P的坐標(biāo)是 ;
(2)若直線y=ax+b經(jīng)過另一點A(0,11),求出該直線的表達(dá)式;
(3)在(2)的條件下,若有一條直線y=mx+n與直線y=ax+b關(guān)于x軸成軸對稱,求直線y=mx+n與拋物線的交點坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com