【題目】拋物線經(jīng)過(guò)點(diǎn)O(0,0)與點(diǎn)A(4,0),頂點(diǎn)為點(diǎn)P,且最小值為-2.
(1)求拋物線的表達(dá)式;
(2)過(guò)點(diǎn)O作PA的平行線交拋物線對(duì)稱軸于點(diǎn)M,交拋物線于另一點(diǎn)N,求ON的長(zhǎng);
(3)拋物線上是否存在一個(gè)點(diǎn)E,過(guò)點(diǎn)E作x軸的垂線,垂足為點(diǎn)F,使得△EFO∽△AMN,若存在,試求出點(diǎn)E的坐標(biāo);若不存在請(qǐng)說(shuō)明理由.
【答案】(1)拋物線的表達(dá)式為,(或);(2);(3)拋物線上存在點(diǎn)E,使得△EFO∽△AMN,這樣的點(diǎn)共有2個(gè),分別是(,)和(,).
【解析】
(1)由點(diǎn)O(0,0)與點(diǎn)A(4,0)的縱坐標(biāo)相等,可知點(diǎn)O、A是拋物線上的一對(duì)對(duì)稱點(diǎn),所以對(duì)稱軸為直線x=2,又因?yàn)樽钚≈凳?/span>-2,所以頂點(diǎn)為(2,-2),利用頂點(diǎn)式即可用待定系數(shù)法求解;
(2)設(shè)拋物線對(duì)稱軸交軸于點(diǎn)D、N(,),先求出=45°,由ON∥PA,依據(jù)平行線的性質(zhì)得到=45°,依據(jù)等腰直角三角形兩直角邊的關(guān)系可得到=,解出即可得到點(diǎn)N的坐標(biāo),再運(yùn)用勾股定理求出ON的長(zhǎng)度;
(3)先運(yùn)用勾股定理求出AM和OM,再用ON-OM得MN,運(yùn)用相似三角形的性質(zhì)得到EF:FO的值,設(shè)E(,),分點(diǎn)E在第一象限、第二或四象限討論,依據(jù)EF:FO=1
:2列出關(guān)于m的方程解出即可.
解:(1)∵拋物線經(jīng)過(guò)點(diǎn)O(0,0)與點(diǎn)A(4,0),
∴對(duì)稱軸為直線x=2,
又∵頂點(diǎn)為點(diǎn)P,且最小值為-2,,
∴頂點(diǎn)P(2,-2),
∴設(shè)拋物線的表達(dá)式為
將O(0,0)坐標(biāo)代入,解得
∴拋物線的表達(dá)式為,即;
(2)設(shè)拋物線對(duì)稱軸交軸于點(diǎn)D,
∵頂點(diǎn)P坐標(biāo)為(2,-2),
∴點(diǎn)D坐標(biāo)為(2,0)
又∵A(4,0),
∴△ADP是以為直角的等腰直角三角形,=45°
又∵ON∥PA ,
∴=45°
∴若設(shè)點(diǎn)N的坐標(biāo)為(,)則=
解得,
∴點(diǎn)N的坐標(biāo)為(,)
∴
(3)拋物線上存在一個(gè)點(diǎn)E,使得△EFO∽△AMN,理由如下:
連接PO、AM,
∵=45°,=90°,
∴,
又∵由點(diǎn)D坐標(biāo)為(2,0),得OD=2,
∴,
又∵=90°,由A(4,0),D(2,0)得AD=2,
∴,
同理可得,
∴,
∴AM:MN=: =1:2
∵△EFO∽△AMN
∴EF:FO=AM:MN=1:2
設(shè)點(diǎn)E的坐標(biāo)為(,)(其中),
①當(dāng)點(diǎn)E在第一象限時(shí),,
解得,此時(shí)點(diǎn)E的坐標(biāo)為(,),
②當(dāng)點(diǎn)E在第二象限或第四象限時(shí),,
解得,此時(shí)點(diǎn)E的坐標(biāo)為(,)
綜上所述,拋物線上存在一個(gè)點(diǎn)E,使得△EFO∽△AMN,這樣的點(diǎn)共有2個(gè),分別是(,)和(,).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題發(fā)現(xiàn):
(1)如圖①,在中,,,,點(diǎn)是的中點(diǎn),點(diǎn)在邊上,將沿著折疊后得到,連接并使得最小,請(qǐng)畫出符合題意的點(diǎn);
問(wèn)題探究:
(2)如圖②,已知在和中,,,,連接,點(diǎn)是的中點(diǎn),連接,求的最大值;
問(wèn)題解決:
(3)西安大明宮遺址公園是世界文化遺產(chǎn),全國(guó)重點(diǎn)文物保護(hù)單位,為了豐富同學(xué)們的課外學(xué)習(xí)生活,培養(yǎng)同學(xué)們的探究實(shí)踐能力,周末光明中學(xué)的張老師在家委會(huì)的協(xié)助下,帶領(lǐng)全班同學(xué)去大明宮開展研學(xué)活動(dòng).在公園開設(shè)的一處沙地考古模擬場(chǎng)地上,同學(xué)們參加了一次模擬考古游戲.張老師為同學(xué)們現(xiàn)場(chǎng)設(shè)計(jì)了一個(gè)四邊形的活動(dòng)區(qū)域,如圖③所示,其中為一條工作人員通道,同學(xué)們的入口設(shè)在點(diǎn)處,,,,米.在上述條件下,小明想把寶物藏在距入口盡可能遠(yuǎn)的處讓小鵬去找,請(qǐng)問(wèn)小明的想法是否可以實(shí)現(xiàn)?如果可以,請(qǐng)求出的最大值及此時(shí)區(qū)域的面積,如果不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=Rt∠,以BC為直徑的⊙O交AB于點(diǎn)D,切線DE交AC于點(diǎn)E.
(1)求證:∠A=∠ADE;
(2)若AD=16,DE=10,求BC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)G在正方形ABCD的對(duì)角線AC上,,垂足為點(diǎn)E,,垂足為點(diǎn)F.
發(fā)現(xiàn)問(wèn)題:在圖中,的值為______.
探究問(wèn)題:將正方形CEGF繞點(diǎn)C順時(shí)針?lè)较蛐D(zhuǎn)角,如圖所示,探究線段AG與BE之間的數(shù)量關(guān)系,并證明你的結(jié)論.
解決問(wèn)題:正方形CEGF在旋轉(zhuǎn)過(guò)程中,當(dāng)B,E,F三點(diǎn)在一條直線上時(shí),如圖所示,延長(zhǎng)CG交AD于點(diǎn)H;若,,直接寫出BC的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為爭(zhēng)創(chuàng)文明城市,我市交警部門在全市范圍開展了安全使用電瓶車專項(xiàng)宣傳活動(dòng).在活動(dòng)前和活動(dòng)后分別隨機(jī)抽取了部分使用電瓶車的市民,就騎電瓶車戴安全帽情況進(jìn)行問(wèn)卷調(diào)查,并將兩次收集的數(shù)據(jù)制成如下統(tǒng)計(jì)圖表.
類別 | 人數(shù) | 百分比 |
A | 68 | 6.8% |
B | 245 | b% |
C | a | 51% |
D | 177 | 17.7% |
總計(jì) | c | 100% |
根據(jù)以上提供的信息解決下列問(wèn)題:
(1)a= ,b= c=
(2)若我市約有30萬(wàn)人使用電瓶車,請(qǐng)分別計(jì)算活動(dòng)前和活動(dòng)后全市騎電瓶車“都不戴”安全帽的人數(shù).
(3)經(jīng)過(guò)某十字路口,汽車無(wú)法繼續(xù)直行只可左轉(zhuǎn)或右轉(zhuǎn),電動(dòng)車不受限制,現(xiàn)有一輛汽車和一輛電動(dòng)車同時(shí)到達(dá)該路口,用畫樹狀圖或列表的方法求汽車和電動(dòng)車都向左轉(zhuǎn)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,以40m/s的速度將小球沿與地面30°角的方向擊出時(shí),小球的飛行路線是一段拋物線.如果不考慮空氣阻力,小球的飛行高度h(單位:m)與飛行時(shí)間t(單位:s)之間的函數(shù)關(guān)系式為h=20t-(t≥0). 回答問(wèn)題:
(1)小球的飛行高度能否達(dá)到19.5m;
(2) 小球從最高點(diǎn)到落地需要多少時(shí)間?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,點(diǎn)I是△ABC的內(nèi)心,∠AIC=124°,點(diǎn)E在AD的延長(zhǎng)線上,則∠CDE的度數(shù)為( 。
A. 56° B. 62° C. 68° D. 78°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在平面直角坐標(biāo)系中,點(diǎn),以線段為直徑作圓,圓心為,直線交于點(diǎn),連接.
(1)求證:直線是的切線;
(2)點(diǎn)為軸上任意一動(dòng)點(diǎn),連接交于點(diǎn),連接:
①當(dāng)時(shí),求所有點(diǎn)的坐標(biāo) (直接寫出);
②求的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年12月17日,我國(guó)第一艘國(guó)產(chǎn)航母“山東艦”在海南三亞交付海軍.在民族復(fù)興的路上我們偉大的祖國(guó)又前進(jìn)了一大步!如圖,“山東艦”在一次試水測(cè)試中,由東向西航行到達(dá)處時(shí),測(cè)得小島位于距離航母30海里的北偏東37°方向.“山東艦”再向西勻速航行1.5小時(shí)后到達(dá)處,此時(shí)測(cè)得小島位于航母的北偏東70°方向.
(1)_______°;
(2)求航母的速度.(參考數(shù)據(jù):,,,,,)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com