如圖,△ABC中,DE垂直平分AC,與AC交于E,與BC交于D,∠C=15°,∠BAD=60°,則△ABC是________三角形.

直角
分析:根據(jù)線段垂直平分線的性質(zhì),可得AD=CD,則∠C=∠DAC=15°,所以,∠BAD+∠DAC+∠C=90°,即∠B=90°,即可得出;
解答:解:∵DE垂直平分AC,
∴AD=CD,又∠C=15°,
∴∠C=∠DAC=15°,∠ADB=∠C+∠DAC=30°,
又∠BAD=60°,
∴∠BAD+∠ADB=90°,
∴∠B=90°;
即△ABC是直角三角形;
故答案為:直角.
點評:本題主要考查了線段垂直平分線的性質(zhì)和直角三角形的判定,知道線段垂直平分線上的點到線段兩個端點的距離相等.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

26、已知:如圖,△ABC中,點D在AC的延長線上,CE是∠DCB的角平分線,且CE∥AB.
求證:∠A=∠B.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

27、已知:如圖,△ABC中,∠BAC=60°,D、E兩點在直線BC上,連接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

27、如圖,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求證:∠ANM=∠B.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

14、如圖,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,則∠C的大小是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知,如圖,△ABC中,點D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度數(shù);
(2)若畫∠DAC的平分線AE交BC于點E,則AE與BC有什么位置關(guān)系,請說明理由.

查看答案和解析>>

同步練習冊答案