【題目】如圖1,已知點(diǎn)E為正方形ABCD對角線CA延長線上一點(diǎn),過E點(diǎn)作EF⊥CB交其延長線于點(diǎn)F,且EF=4,AC=
(1)如圖1,連接BE,求線段BE的長;
(2)將等腰Rt△CEF繞C點(diǎn)旋轉(zhuǎn)至如圖2的位置,連接AE,M點(diǎn)為AE的中點(diǎn),連接MD、MF,求MD與MF的關(guān)系;
(3)將△CEF繞C點(diǎn)旋轉(zhuǎn)一周,請直接寫出點(diǎn)M在這個過程中的運(yùn)動路徑長為 .
【答案】(1)5;(2)DM=MF,DM⊥MF.(3)4π.
【解析】
(1)連接BE,再求出BF的長,然后利用勾股定理進(jìn)行解答即可;
(2)延長FM到P,使得MP=MF,連接PD、PF、PA,延長PA交CF于K.證明△PDF是等腰直角三角形即可完成解答;
(3)接AC,取AC的中點(diǎn)O,連接OM,由中位線定理可得OM=2,推出點(diǎn)M的運(yùn)動軌跡是以O為圓心,2為半徑的圓即可完成解答.
解:(1)如圖1中,連接BE.
∵S四邊形ABCD是正方形,
∴∠ACB=45°,AB=BC,∠ABC=90°,
∵AC=,
∴AB=BC=1,
∵EF⊥CF,
∴∠F=90°,
∴∠FCA=∠FAC=45°,
∴EF=FC=4,
∴FB=3,
∴BE===5.
(2)結(jié)論:MD=MF,MD⊥MF.
理由:延長FM到P,使得MP=MF,連接PD,PF,PA,延長PA交CF于K.
∵EM=MA,MF=MP,∠EMF=∠AMP,
∴△EMF≌△AMP(SAS),
∴PA=EF=CF,∠EFM=∠APM,
∴PK∥EF,
∵EF⊥CF,
∴PK⊥CF,
∴∠AKC=∠ADC=90°,
∴∠DAK+∠DCK=180°,
∵∠DAK+∠PAD=180°,
∴∠PAD=∠DCF,
∵CD=DC,
∴△PAD≌△FCD(SAS),
∴DP=DF,∠PDA=∠FDC,
∴∠PDF=∠ADC=90°,
∵PM=MF,
∴DM=MF=PM,DM⊥FM.
∴DM=MF,DM⊥MF.
(3)連接AC,取AC的中點(diǎn)O,連接OM.
∵AM=ME,AO=OC,
∴OM=EC,
∵EC=4,
∴OM=2=定長,
∴點(diǎn)M的運(yùn)動軌跡是以O為圓心,2為半徑的圓,
當(dāng)△CEF繞C點(diǎn)旋轉(zhuǎn)一周,M的軌跡為整個圓,
因此路徑長為4π,
故答案為4π.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們將能完全覆蓋某平面圖形的最小圓稱為該平面圖形的最小覆蓋圓.例如線段AB的最小覆蓋圓就是以線段AB為直徑的圓.
(1)請分別作出下圖中兩個三角形的最小覆蓋圓(要求用尺規(guī)作圖,保留作圖痕跡,不寫作法);
(2)探究三角形的最小覆蓋圓有何規(guī)律?請寫出你所得到的結(jié)論(不要求證明).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線與y軸交于B,與x軸交于點(diǎn)D、A,點(diǎn)A在點(diǎn)D的右邊,頂點(diǎn)為F,
(1)直接寫出點(diǎn)B、A、F的坐標(biāo);
(2)設(shè)Q在該拋物線上,且,求點(diǎn)Q的坐標(biāo);
(3)對大于1常數(shù)m,在x軸上是否存在點(diǎn)M,使得?若存在,求出點(diǎn)M坐標(biāo);若不存在,說明理由?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我省南部的南宮山景區(qū),為吸引游客組團(tuán)來此旅游特推出了如下門票收費(fèi)標(biāo)準(zhǔn):
標(biāo)準(zhǔn)一:如果人數(shù)不超過20人,門票價格70元/人
標(biāo)準(zhǔn)二:如果人數(shù)超過20人,每超過1人,門票價格降低2元,但門票價格不低于55元/人
(1)若某單位組織22名員工去南宮山景區(qū)旅游,則購買門票共需多少元?
(2)若某單位共支付南宮山景區(qū)門票費(fèi)用1500元,試求該單位這次共有多少名員工去南宮山旅游.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O中,點(diǎn)C在優(yōu)弧上,將弧沿折疊后剛好經(jīng)過AB的中點(diǎn)D,若⊙O的半徑為,AB=4,則BC的長是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,A(t,0),B(t+2,0).對于線段AB和點(diǎn)P給出如下定義:當(dāng)∠APB=90°時,稱點(diǎn)P為線段AB的“直角點(diǎn)”.
(Ⅰ)當(dāng)t=﹣1時,點(diǎn)C(0,1),判斷點(diǎn)C是否為線段AB的“直角點(diǎn)”,并說明理由;
(Ⅱ)已知拋物線y=ax2+bx(a>0,b<0)的頂點(diǎn)為M,與x軸交于A(t,0),B(t+2,0),若點(diǎn)M為線段AB的“直角點(diǎn)”,求出此拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,晚上,小亮在廣場上乘涼.圖中線段AB表示站在廣場上的小亮,線段PO表示直立在廣場上的燈桿,點(diǎn)P表示照明燈.
(1)請你在圖中畫出小亮在照明燈(P)照射下的影子;
(2)如果燈桿高PO=12m,小亮的身高AB=1.6m,小亮與燈桿的距離BO=13m,請求出小亮影子的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,一枚質(zhì)地均勻的正六面體骰子的六個面分別標(biāo)有數(shù)字,,,,,,如圖2,正方形的頂點(diǎn)處各有一個圈,跳圈游戲的規(guī)則為:游戲者每擲一次骰子,骰子朝上的那面上的數(shù)字是幾,就沿正方形的邊按順時針方向連續(xù)跳幾個邊長。如:若從圈起跳,第一次擲得,就順時針連續(xù)跳個邊長,落在圈;若第二次擲得,就從圈開始順時針連續(xù)跳個邊長,落得圈;…設(shè)游戲者從圈起跳.
(1)小賢隨機(jī)擲一次骰子,求落回到圈的概率.
(2)小南隨機(jī)擲兩次骰子,用列表法求最后落回到圈的概率,并指出他與小賢落回到圈的可能性一樣嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰△ABC中,AB=AC=4,BC=6點(diǎn)D在底邊BC上,且∠DAC=∠ACD,將△ACD沿著AD所在直線翻折,使得點(diǎn)C落到點(diǎn)E處,聯(lián)結(jié)BE,那么BE的長為______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com