【題目】如圖,A(0,1),M(3,2),N(4,4), 動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿y
軸以每秒1個(gè)單位長的速度向上移動(dòng),且過點(diǎn)P的直線l:y=-x+b也隨之移動(dòng),設(shè)移動(dòng)時(shí)間為t 秒.(直線y = kx+b平移時(shí)k不變)

(1)當(dāng)t=3時(shí),求l 的解析式;
(2)若點(diǎn)M,N位于l 的異側(cè),確定t 的取值范圍.

【答案】
(1)解:直線y=-x+b交y軸于點(diǎn)P(0,b),由題意,得b>0,t≥0,b="1+t"

當(dāng)t=3時(shí),b=4 ∴y="-x+4"


(2)解:當(dāng)直線y=-x+b過M(3,2)時(shí),2=-3+b解得b=5,

∴5=1+t

∴t=4

當(dāng)直線y=-x+b過N(4,4)時(shí),4=-4+b解得b=8

∴8=1+t

∴t=7

∴4<t<7


【解析】(1)當(dāng)t=3時(shí),由動(dòng)點(diǎn)P從A點(diǎn)出發(fā),沿y軸以每秒一個(gè)單位長度的速度向上移動(dòng),得出P點(diǎn)的坐標(biāo),那么b=4進(jìn)而求出l的解析式;
(2)分別求出直線l經(jīng)過點(diǎn)M,N時(shí)的t的值,即可得到t的取值范圍。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,一次函數(shù)y=ax+b(a≠0)的圖形與反比例函數(shù)y= (k≠0)的圖象交于第二、四象限內(nèi)的A、B兩點(diǎn),與y軸交于C點(diǎn),過點(diǎn)A作AH⊥y軸,垂足為H,OH=3,tan∠AOH=,點(diǎn)B的坐標(biāo)為(m,﹣2).

(1)求△AHO的周長;

(2)求該反比例函數(shù)和一次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市商店為了對某種商品促銷,將定價(jià)為3元的商品,以下列方式優(yōu)惠銷售:若購買不超過5件,按原價(jià)付款;若一次性購買5件以上,超過部分打八折.如果用27元錢,最多可以購買該商品( )件

A. 9B. 10C. 11D. 12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知A(x1 , y1)是一次函數(shù)y=﹣x+b+1圖象上一點(diǎn),若x1<0,y1<0,則b的取值范圍是(
A.b<0
B.b>0
C.b>﹣1
D.b<﹣1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣(x﹣1)2+cx軸交于A,BA,B分別在y軸的左右兩側(cè))兩點(diǎn),y軸的正半軸交于點(diǎn)C,頂點(diǎn)為D,已知A(﹣1,0)

1)求點(diǎn)B,C的坐標(biāo);

2)判斷CDB的形狀并說明理由;

3)將COB沿x軸向右平移t個(gè)單位長度(0t3)得到QPEQPECDB重疊部分(如圖中陰影部分)面積為S,求St的函數(shù)關(guān)系式,并寫出自變量t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知某小區(qū)的兩幢10層住宅樓間的距離為AC="30" m,由地面向上依次為第1層、第2層、、第10層,每層高度為3 m.假設(shè)某一時(shí)刻甲樓在乙樓側(cè)面的影長EC=h,太陽光線與水平線的夾角為α

(1) 用含α的式子表示h(不必指出α的取值范圍);

(2) 當(dāng)α30°時(shí),甲樓樓頂B點(diǎn)的影子落在乙樓的第幾層?若α每小時(shí)增加15°,從此時(shí)起幾小時(shí)后甲樓的影子剛好不影響乙樓采光 ?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,將三角形各點(diǎn)的縱坐標(biāo)都減去3,橫坐標(biāo)保持不變,所得圖形與原圖形相比( )

A. 向右平移了3個(gè)單位長度B. 向左平移了3個(gè)單位長度

C. 向上平移了3個(gè)單位長度D. 向下平移了3個(gè)單位長度

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直線y=kx+b與反比例函數(shù)y=x<0)的圖象交于點(diǎn)A(﹣1,m),與x軸交于點(diǎn)B(1,0)

(1)求m的值;

(2)求直線AB的解析式;

(3)若直線x=tt>1)與直線y=kx+b交于點(diǎn)M,與x軸交于點(diǎn)N,連接ANSAMN=,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商家預(yù)測一種應(yīng)季襯衫能暢銷市場,就用13200元購進(jìn)了一批這種襯衫,面市后果然供不應(yīng)求,商家又用28800元購進(jìn)了第二批這種襯衫,所購數(shù)量是第一批購進(jìn)量的2倍,但單價(jià)貴了10元.
(1)該商家購進(jìn)的第一批襯衫是多少件?
(2)若兩批襯衫按相同的標(biāo)價(jià)銷售,最后剩下50件按八折優(yōu)惠賣出,如果兩批襯衫全部售完后利潤不低于25%(不考慮其他因素),那么每件襯衫的標(biāo)價(jià)至少是多少元?

查看答案和解析>>

同步練習(xí)冊答案