(2013•上海)如圖,在△ABC和△DEF中,點B、F、C、E在同一直線上,BF=CE,AC∥DF,請?zhí)砑右粋條件,使△ABC≌△DEF,這個添加的條件可以是
AC=DF
AC=DF
.(只需寫一個,不添加輔助線)
分析:求出BC=EF,∠ACB=∠DFE,根據(jù)SAS推出兩三角形全等即可.
解答:解:AC=DF,
理由是:∵BF=CE,
∴BF+FC=CE+FC,
∴BC=EF,
∵AC∥DF,
∴∠ACB=∠DFE,
在△ABC和△DEF中
AC=DF
∠ACB=∠DFE
BC=EF

∴△ABC≌△DEF(SAS),
故答案為:AC=DF.
點評:本題考查了全等三角形的判定的應用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,答案不唯一.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•上海)如圖,已知在△ABC中,點D、E、F分別是邊AB、AC、BC上的點,DE∥BC,EF∥AB,且AD:DB=3:5,那么CF:CB等于( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•上海)如圖,在△ABC中,AB=AC,BC=8,tanC=
3
2
,如果將△ABC沿直線l翻折后,點B落在邊AC的中點處,直線l與邊BC交于點D,那么BD的長為
15
4
15
4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•上海)如圖,在△ABC中,∠ACB=90°,∠B>∠A,點D為邊AB的中點,DE∥BC交AC于點E,CF∥AB交DE的延長線于點F.
(1)求證:DE=EF;
(2)連結CD,過點D作DC的垂線交CF的延長線于點G,求證:∠B=∠A+∠DGC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•上海)如圖,在平面直角坐標系xOy中,頂點為M的拋物線y=ax2+bx(a>0),經(jīng)過點A和x軸正半軸上的點B,AO=OB=2,∠AOB=120°.
(1)求這條拋物線的表達式;
(2)連接OM,求∠AOM的大;
(3)如果點C在x軸上,且△ABC與△AOM相似,求點C的坐標.

查看答案和解析>>

同步練習冊答案