【題目】如圖,某武警部隊(duì)在一次地震搶險(xiǎn)救災(zāi)行動(dòng)中,探險(xiǎn)隊(duì)員在相距4米的水平地面A,B兩處均探測(cè)出建筑物下方C處有生命跡象,已知在A處測(cè)得探測(cè)線(xiàn)與地面的夾角為30°,在B處測(cè)得探測(cè)線(xiàn)與地面的夾角為60°,求該生命跡象C所在位置的深度.(結(jié)果精確到0.1米,參考數(shù)據(jù):≈1.41,≈1.73)
【答案】該生命跡象所在位置的深度約為3.5米.
【解析】
過(guò)C點(diǎn)作AB的垂線(xiàn)交AB的延長(zhǎng)線(xiàn)于點(diǎn)D,由三角形外角的性質(zhì)可得出∠ACB=30°,進(jìn)而可得出BC=AB=4米,在Rt△CDB中利用銳角三角函數(shù)的定義即可求出CD的值.
解:過(guò)C點(diǎn)作AB的垂線(xiàn)交AB的延長(zhǎng)線(xiàn)于點(diǎn)D,
∵∠CAD=30°,∠CBD=60°,∴∠ACB=30°,
∴∠CAB=∠ACB=30°,∴BC=AB=4米,
在Rt△CDB中,BC=4米,∠CBD=60°,
∴sin 60°=,
∴CD=4sin 60°=4×=2≈3.5米,
故該生命跡象所在位置的深度約為3.5米.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖表示甲和乙沿相同路線(xiàn)相向行駛,,表示兩人離地行駛的路程(千米)與經(jīng)過(guò)的時(shí)間(小時(shí))之間的函數(shù)關(guān)系.甲先出發(fā),兩地相距90千米.請(qǐng)根據(jù)這個(gè)行駛過(guò)程中的圖象填空:
(1)表示甲離地的距離與時(shí)間的關(guān)系的圖象是 (填或),甲的速度是 ,乙的速度是: .
(2)甲出發(fā)多少時(shí)間兩人恰好相距?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩人進(jìn)行羽毛球比賽,羽毛球飛行的路線(xiàn)為拋物線(xiàn)的一部分,如圖,甲在點(diǎn)上正方的處發(fā)出一球,羽毛球飛行的高度與水平距離之間滿(mǎn)足函數(shù)表達(dá)式.已知點(diǎn)與球網(wǎng)的水平距離為,球網(wǎng)的高度為.
(1)當(dāng)時(shí),①求的值.②通過(guò)計(jì)算判斷此球能否過(guò)網(wǎng).
(2)若甲發(fā)球過(guò)網(wǎng)后,羽毛球飛行到點(diǎn)的水平距離為,離地面的高度為的處時(shí),乙扣球成功,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△ABC≌Rt△CED(∠ACB=∠CDE=90°),點(diǎn)D在BC上,AB與CE相交于點(diǎn)F
(1) 如圖1,直接寫(xiě)出AB與CE的位置關(guān)系
(2) 如圖2,連接AD交CE于點(diǎn)G,在BC的延長(zhǎng)線(xiàn)上截取CH=DB,射線(xiàn)HG交AB于K,求證:HK=BK
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】的三邊長(zhǎng)分別為.
求的取值范圍;
當(dāng)的周長(zhǎng)為偶數(shù)時(shí),求;
若為等腰三角形,求.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校與圖書(shū)館在同一條筆直道路上,甲從學(xué)校去圖書(shū)館,乙從圖書(shū)館回學(xué)校,甲、乙兩人都勻速步行且同時(shí)出發(fā),乙先到達(dá)目的地,兩人之間的距離(米)與時(shí)間(分鐘)之間的函數(shù)關(guān)系如圖所示,則下列說(shuō)法正確的是( )
①當(dāng)分鐘時(shí)甲乙兩人相遇;
②甲的速度為40米/分鐘;
③乙的速度為50米/分鐘;
④乙到達(dá)目的地時(shí),甲離目的地的距離為800米.
A.①②B.③④C.①②④D.①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在Rt△ABC中,∠ACB=90°,AB=9,cosA=,如果將△ABC繞著點(diǎn)C旋轉(zhuǎn)至△A′B′C′的位置,使點(diǎn)B′落在∠ACB的角平分線(xiàn)上,A′B′與AC相交于點(diǎn)D,那么線(xiàn)段CD的長(zhǎng)等于______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠B=90°,AB=12,BC=24,動(dòng)點(diǎn)P從點(diǎn)A開(kāi)始沿邊AB向終點(diǎn)B以每秒2個(gè)單位長(zhǎng)度的速度移動(dòng),動(dòng)點(diǎn)Q從點(diǎn)B開(kāi)始沿邊BC以每秒4個(gè)單位長(zhǎng)度的速度向終點(diǎn)C移動(dòng),如果點(diǎn)P、Q分別從點(diǎn)A、B同時(shí)出發(fā),那么△PBQ的面積S隨出發(fā)時(shí)間t(s)如何變化?寫(xiě)出函數(shù)關(guān)系式及t的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com