【題目】某市舉行知識(shí)大賽,A校、B校各派出5名選手組成代表隊(duì)參加決賽,兩校派出選手的決賽成績(jī)?nèi)鐖D所示.

(1)根據(jù)圖示填寫(xiě)下表:

平均數(shù)/

中位數(shù)/

眾數(shù)/

A

______

85

______

B

85

______

100

(2)結(jié)合兩校成績(jī)的平均數(shù)和中位數(shù),分析哪個(gè)學(xué)校的決賽成績(jī)較好;

(3)計(jì)算兩校決賽成績(jī)的方差,并判斷哪個(gè)學(xué)校代表隊(duì)選手成績(jī)較為穩(wěn)定.

【答案】(1)85;85;80;(2)A校成績(jī)好些;(3)A校代表隊(duì)選手成績(jī)較為穩(wěn)定

【解析】

(1)根據(jù)成績(jī)表加以計(jì)算可補(bǔ)全統(tǒng)計(jì)表.根據(jù)平均數(shù)、眾數(shù)、中位數(shù)的統(tǒng)計(jì)意義回答;

(2)根據(jù)平均數(shù)和中位數(shù)的統(tǒng)計(jì)意義分析得出即可;

(3)分別求出A校、B校的方差即可.

解:(1A校平均數(shù)為:75+80+85+85+100=85(分),眾數(shù)85(分);

B校中位數(shù)80(分).

填表如下:

平均數(shù)/

中位數(shù)/

眾數(shù)/

A

85

85

85

B

85

80

100

故答案為:85;8580

2A校成績(jī)好些.因?yàn)閮蓚(gè)隊(duì)的平均數(shù)都相同,A校的中位數(shù)高,

所以在平均數(shù)相同的情況下中位數(shù)高的A校成績(jī)好些.

3)∵A校的方差

s12=[75852+80852+85852+85852+100852]=70,

B校的方差

s22=[70852+100852+100852+75852+80852]=160

s12s22,

因此,A校代表隊(duì)選手成績(jī)較為穩(wěn)定.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,直線l1:y=﹣x+3與坐標(biāo)軸分別交于點(diǎn)A,B,與直線l2:y=x交于點(diǎn)C.

(1)求A,B兩點(diǎn)的坐標(biāo);

(2)求BOC的面積;

(3)如圖2,若有一條垂直于x軸的直線l以每秒1個(gè)單位的速度從點(diǎn)A出發(fā)沿射線AO方向作勻速滑動(dòng),分別交直線l1,l2及x軸于點(diǎn)M,N和Q.設(shè)運(yùn)動(dòng)時(shí)間為t(s),連接CQ.

當(dāng)OA=3MN時(shí),求t的值;

試探究在坐標(biāo)平面內(nèi)是否存在點(diǎn)P,使得以O(shè)、Q、C、P為頂點(diǎn)的四邊形構(gòu)成菱形?若存在,請(qǐng)直接寫(xiě)出t的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線y=﹣ (x﹣1)2+3與y軸交于點(diǎn)A,頂點(diǎn)為B,對(duì)稱軸BC與x軸交于點(diǎn)C.

(1)如圖1.求點(diǎn)A的坐標(biāo)及線段OC的長(zhǎng);
(2)點(diǎn)P在拋物線上,直線PQ∥BC交x軸于點(diǎn)Q,連接BQ.
①若含45°角的直角三角板如圖2所示放置.其中,一個(gè)頂點(diǎn)與點(diǎn)C重合,直角頂點(diǎn)D在BQ上,另一個(gè)頂點(diǎn)E在PQ上.求直線BQ的函數(shù)解析式;
②若含30°角的直角三角板一個(gè)頂點(diǎn)與點(diǎn)C重合,直角頂點(diǎn)D在直線BQ上,另一個(gè)頂點(diǎn)E在PQ上,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖1,直線MN與直線AB、CD分別交于點(diǎn)EF,∠1與∠2互補(bǔ).

(1)試判斷直線ABCD的位置關(guān)系,并說(shuō)明理由;

(2)如圖2,∠BEF與∠EFD的角平分線交于點(diǎn)P,EPCD交于點(diǎn)G,點(diǎn)HMN上的一點(diǎn)且GHEG.求證:PFGH

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在正方形ABCD中,BD是一條對(duì)角線,點(diǎn)P在CD上(與點(diǎn)C,D不重合),連接AP,平移△ADP,使點(diǎn)D移動(dòng)到點(diǎn)C,得到△BCQ,過(guò)點(diǎn)Q作QM⊥BD于M,連接AM,PM(如圖1).

(1)判斷AM與PM的數(shù)量關(guān)系與位置關(guān)系并加以證明;

(2)若點(diǎn)P在線段CD的延長(zhǎng)線上,其它條件不變(如圖2),(1)中的結(jié)論是否仍成立?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】射線繞原點(diǎn)從數(shù)軸的正半軸逆時(shí)針旋轉(zhuǎn)一定的角度),射線上的一點(diǎn)與原點(diǎn)的距離()為,并規(guī)定:當(dāng)時(shí),點(diǎn)的位置記作;當(dāng)時(shí),點(diǎn)的位置記作.如圖,點(diǎn)、的位置表示為,.回答下列問(wèn)題:

(1)已知點(diǎn),點(diǎn),則點(diǎn)與點(diǎn)的距離為 ;線段的中點(diǎn)的位置是( , ).

(2)已知點(diǎn),點(diǎn),點(diǎn)點(diǎn)出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度在線段上來(lái)回運(yùn)動(dòng);同時(shí)射線以每秒10°的速度繞原點(diǎn)逆時(shí)針旋轉(zhuǎn),當(dāng)時(shí)間(其中)為何值時(shí),?并求出此時(shí)三角形的面積.

(3)直接寫(xiě)出位置滿足的所有點(diǎn)所圍成的圖形面積.(結(jié)果保留一位小數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解不等式 ,并把解在數(shù)軸上表示出來(lái).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,Rt△ABC中,∠ACB=90°,AC=BC=2 ,若把Rt△ABC繞邊AB所在直線旋轉(zhuǎn)一周,則所得幾何體的表面積為(
A.4π
B.4 π
C.8π
D.8 π

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,射線PG平分∠EPF,O為射線PG上一點(diǎn),以O(shè)為圓心,10為半徑作⊙O,分別與∠EPF的兩邊相交于A、B和C、D,連接OA,此時(shí)有OA∥PE.
(1)求證:AP=AO;
(2)若tan∠OPB= ,求弦AB的長(zhǎng);
(3)若以圖中已標(biāo)明的點(diǎn)(即P、A、B、C、D、O)構(gòu)造四邊形,則能構(gòu)成菱形的四個(gè)點(diǎn)為 , 能構(gòu)成等腰梯形的四個(gè)點(diǎn)為

查看答案和解析>>

同步練習(xí)冊(cè)答案