【題目】如圖,△ABC中,ACBC,AC的垂直平分線分別交AC,BC于點E,F.點DAB邊的中點,點MEF上一動點,若AB4,△ABC的面積是16,則△ADM周長的最小值為(  )

A.20B.16C.12D.10

【答案】D

【解析】

連接CD,CM,由于△ABC是等腰三角形,點DBA邊的中點,故CDBA,再根據(jù)三角形的面積公式求出CD的長,再再根據(jù)EF是線段AC的垂直平分線可知,點A關(guān)于直線EF的對稱點為點C,故CD的長為AMMD的最小值,由此即可得出結(jié)論.

解:連接CDCM

∵△ABC是等腰三角形,點DBA邊的中點,

CDBA,

SABCBACD×4×CD16,解得CD8,

EF是線段AC的垂直平分線,

A關(guān)于直線EF的對稱點為點C

MAMC,

CDCM+MD

CD的長為AM+MD的最小值,

∴△ADM的周長最短=(AM+MD+ADCD+BA8+×48+210

故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,字母S由兩條圓弧KL、MN和線段LM組成,這兩條圓弧每一條都是一個半徑為1的圓的圓周的,線段LM與兩個圓相切.KN分別是兩個圓的切點,則線段LM的長為_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,長方形ABCD中,AB=3cm,AD=9cm,將此長方形折疊,使點B與點D重合,折痕為EF,則△ABE的面積為(  )

A.6cm2B.8 cm2C.10 cm2D.12 cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知菱形ABCD的對角線相交于點O,延長AB至點E,使BE=AB,連結(jié)CE

(1)求證:BD=EC;

(2)AB=5 BD=6時,求△ACE的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,O為原點,點A(4,0),點B(0,3),把△ABO繞點B逆時針旋轉(zhuǎn)得到△A′BO′,點A、O旋轉(zhuǎn)后的對應(yīng)點為A′、O′,記旋轉(zhuǎn)角為α.

(1)如圖①,若α=90°,求AA′的長;

(2)如圖②,若α=120°,求點O′的坐標;

(3)KAB的中點,S△KA′O′的面積,求S的取值范圍(直接寫出結(jié)果即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC三個頂點的坐標分別為A11),B4,2),C3,4

1)若△A1B1C1與△ABC關(guān)于y軸成軸對稱,寫出△A1B1C1三個頂點坐標:A1   ;B1   ;C1   

2)畫出△A1B1C1,并求△A1B1C1面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】廊橋是我國古老的文化遺產(chǎn),如圖,是某座拋物線型的廊橋示意圖.已知水面AB40米,拋物線最高點C到水面AB的距離為10米,為保護廊橋的安全,在該拋物線上距水面AB高為8米的點E,F(xiàn)處要安裝兩盞警示燈,求這兩盞燈的水平距離EF.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,D、E為⊙O上位于AB異側(cè)的兩點,連接BD并延長至點C,使得CD=BD,連接AC交⊙O于點F連接AE、DE、DF.

(1)證明:∠E=C;

(2)若∠E=58°,求∠BDF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平分是邊上一點,以點為圓心,大于點的距離為半徑作弧,交于點、,再分別以點、為圓心,大于的長為半徑作弧,兩弧交于點,作直線分別交、于點、,若,則__________

查看答案和解析>>

同步練習(xí)冊答案