【題目】水壩的橫截面是梯形ABCD,現(xiàn)測得壩頂DC=4 m,坡面AD的坡度i為1:1,坡面BC的坡角β為60°,壩高3m,()求:
(1)壩底AB的長(精確到0.1);
(2)水利部門為了加固水壩,在保持壩頂CD不變的情況下降低AD的坡度(如圖),使新坡面DE的坡度i為,原水壩底部正前方2.5m處有一千年古樹,此加固工程對古樹是否有影響?請說明理由.
【答案】(1)AB≈8.73m;(2)沒有影響;理由見解析.
【解析】
(1)根據(jù)坡度公式求出AH和BF的長,再加上FH的長度即可.(2)根據(jù)坡度公式求出EH的長度,進(jìn)而求出AE長度,若小于2.5則沒有影響.
如圖,
(1)分別過C,D作BE垂線,交BE于F,H,易得四邊形CDHF是矩形,
∴CD=HF=4m,DH=CF=3m,
在Rt△ADH中,坡度i=1:1,
∴AH=DH=3m,
在Rt△BCF中,BC坡角為60 °,
∴BF=CF÷tan60°=√3≈1.73,
∴AB=AH+HF+FB=7+1.73=8.73m;
(2)Rt△EDH中,=
,∴EH=3√3,
∴AE=EH-AH=3√3-3≈2.1m<2.5m,
所以沒有影響.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長為5,點(diǎn)E,F分別在AD,DC上,AE=DF=2,BE與AF相交于點(diǎn)G,點(diǎn)H為BF的中點(diǎn),連接GH,則GH的長為( )
A.2B.4
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小甬工作的辦公樓(矩形ABCD)前有一旗桿MN,MN⊥DN,旗桿高為12m,在辦公樓底A處測得旗桿頂?shù)难鼋菫?/span>30°,在辦公樓天臺(tái)B處測旗桿頂?shù)难鼋菫?/span>45°,在小甬所在辦公室樓層E處測得旗桿頂?shù)母┙菫?/span>15°.
(1)辦公樓的高度AB;
(2)求小甬所在辦公室樓層的高度AE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(閱讀):數(shù)學(xué)中,常對同一個(gè)量(圖形的面積、點(diǎn)的個(gè)數(shù)、三角形的內(nèi)角和等)用兩種不同的方法計(jì)算,從而建立相等關(guān)系,我們把這一思想稱為“算兩次”.“算兩次”也稱做富比尼原理,是一種重要的數(shù)學(xué)思想.
(理解):(1)如圖,兩個(gè)邊長分別為、
、
的直角三角形和一個(gè)兩條直角邊都是
的直角三角形拼成一個(gè)梯形.用兩種不同的方法計(jì)算梯形的面積,并寫出你發(fā)現(xiàn)的結(jié)論;
(2)如圖2,行
列的棋子排成一個(gè)正方形,用兩種不同的方法計(jì)算棋子的個(gè)數(shù),可得等式:
________;
(運(yùn)用):(3)邊形有
個(gè)頂點(diǎn),在它的內(nèi)部再畫
個(gè)點(diǎn),以(
)個(gè)點(diǎn)為頂點(diǎn),把
邊形剪成若干個(gè)三角形,設(shè)最多可以剪得
個(gè)這樣的三角形.當(dāng)
,
時(shí),如圖,最多可以剪得
個(gè)這樣的三角形,所以
.
①當(dāng),
時(shí),如圖,
;當(dāng)
,
時(shí),
;
②對于一般的情形,在邊形內(nèi)畫
個(gè)點(diǎn),通過歸納猜想,可得
(用含
、
的代數(shù)式表示).請對同一個(gè)量用算兩次的方法說明你的猜想成立.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:內(nèi)接于
,直徑
交
邊于點(diǎn)
,
.
(1)如圖所示,求證:;
(2)如圖所示,過點(diǎn)作
于H,交
于
,交
于點(diǎn)
,連接
,求證:
;
(3)如圖所示,在(2)的條件下,延長至點(diǎn)
,連接
、
,過點(diǎn)
作
于
,射線
交
于點(diǎn)
,交
于點(diǎn)
,連接
,
,若
,
,求
的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一張圓形紙片,小芳進(jìn)行了如下連續(xù)操作:
將圓形紙片左右對折,折痕為AB,如圖
.
將圓形紙片上下折疊,使A、B兩點(diǎn)重合,折痕CD與AB相交于M,如圖
.
將圓形紙片沿EF折疊,使B、M兩點(diǎn)重合,折痕EF與AB相交于N,如圖
.
連結(jié)AE、AF、BE、BF,如圖
.
經(jīng)過以上操作,小芳得到了以下結(jié)論:
;
四邊形MEBF是菱形;
為等邊三角形;
:
:
.以上結(jié)論正確的有
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,的半徑為
交
于點(diǎn)D,點(diǎn)C是
上一動(dòng)點(diǎn),以BC為邊向下作等邊
.
當(dāng)點(diǎn)C運(yùn)動(dòng)到
時(shí),
求證:BC與
相切;
試判斷點(diǎn)A是否在
上,并說明理由.
設(shè)
的面積為S,求S的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩所醫(yī)院分別有一男一女共4名醫(yī)護(hù)人員支援湖北武漢抗擊疫情.
(1)若從甲、乙兩醫(yī)院支援的醫(yī)護(hù)人員中分別隨機(jī)選1名,則所選的2名醫(yī)護(hù)人員性別相同的概率是 ;
(2)若從支援的4名醫(yī)護(hù)人員中隨機(jī)選2名,用列表或畫樹狀圖的方法求出這2名醫(yī)護(hù)人員來自同一所醫(yī)院的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與
軸交于
,
兩點(diǎn).
(1)求該拋物線的解析式;
(2)拋物線的對稱軸上是否存在一點(diǎn),使
的周長最��?若存在,請求出點(diǎn)
的坐標(biāo),若不存在,請說明理由.
(3)設(shè)拋物線上有一個(gè)動(dòng)點(diǎn),當(dāng)點(diǎn)
在該拋物線上滑動(dòng)到什么位置時(shí),滿足
,并求出此時(shí)點(diǎn)
的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com