【題目】已知等邊三角形ABC,AB=12,以AB為直徑的半圓與BC邊交于點D,過點D作DF⊥AC,垂足為F,過點F作FG⊥AB,垂足為G,連接GD,
(1)求證:DF與⊙O的位置關(guān)系并證明;
(2)求FG的長.
【答案】(1)證明見解析;
(2)FG的長為.
【解析】試題分析:(1)連接OD,證∠ODF=90°即可.
(2)利用△ADF是30°的直角三角形可求得AF長,同理可利用△FHC中的60°的三角函數(shù)值可求得FG長.
試題解析:(1)連接OD,
∵以等邊三角形ABC的邊AB為直徑的半圓與BC邊交于點D,
∴∠B=∠C=∠ODB=60°,
∴OD∥AC,
∵DF⊥AC,
∴∠CFD=∠ODF=90°,即OD⊥DF,
∵OD是以邊AB為直徑的半圓的半徑,
∴DF是圓O的切線;
(2)∵OB=OD=AB=6,且∠B=60°,
∴BD=OB=OD=6,
∴CD=BC﹣BD=AB﹣BD=12﹣6=6,
∵在Rt△CFD中,∠C=60°,
∴∠CDF=30°,
∴CF=CD=×6=3,
∴AF=AC﹣CF=12﹣3=9,
∵FG⊥AB,
∴∠FGA=90°,
∵∠FAG=60°,
∴FG=AFsin60°=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,,,兩內(nèi)角平分線和相交于點.
(1)若,求的度數(shù);
(2)若直線過點,與、分別相交于點、,且,求的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點O是△ABC內(nèi)一點,連接OB、OC,線段AB、OB、OC、AC的中點分別為D、E、F、G.
(1)判斷四邊形DEFG的形狀,并說明理由;
(2)若M為EF的中點,OM=2,∠OBC和∠OCB互余,求線段BC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AC為直徑,弦BD=BA,BE⊥DC交DC的延長線于點E,求證:
(1)∠1=∠BAD;
(2)BE是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB為⊙O的直徑,AC為⊙O的切線,OC交⊙O于點D,BD的延長線交AC于點E.
(1)求證:∠1=∠CAD;
(2)若AE=EC=2,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知AB為⊙O的直徑,P為AB延長線上的任意一點,過點P作⊙O的切線,切點為C,∠APC的平分線PD與AC交于點D.
(1)如圖1,若∠CPA恰好等于30°,求∠CDP的度數(shù);
(2)如圖2,若點P位于(1)中不同的位置,(1)的結(jié)論是否仍然成立?說明你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,AD是高,BE是中線,CF是角平分線,CF交AD于點G,交BE于點H,下面說法不正確的是( )
A.△ABE的面積=△BCE的面積B.∠AFG=∠AGF
C.BH=CHD.∠FAG=2∠ACF
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是二次函數(shù)y=ax2+bx+c(a≠0)的圖象的一部分,給出下列命題:①abc<0;②b>2a;③a+b+c=0④ax2+bx+c=0的兩根分別為﹣3和1;⑤8a+c>0.其中正確的命題是______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com