二次函數(shù)y=﹣2(x﹣5)2+3的頂點坐標是   

(5,3)

解析試題分析:直接根據(jù)頂點式寫出頂點坐標(5,3)!

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:填空題

已知二次函數(shù),當(dāng)時,自變量的取值范圍是        ;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

已知二次函數(shù)的圖象經(jīng)過點(-1,0),(0,2),當(dāng)的增大而增大時,的取值范圍是         

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

(2013年四川綿陽4分)二次函數(shù)y=ax2+bx+c的圖象如圖所示,給出下列結(jié)論:
①2a+b>0;②b>a>c;③若﹣1<m<n<1,則m+n<;④3|a|+|c|<2|b|.
其中正確的結(jié)論是   (寫出你認為正確的所有結(jié)論序號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

若拋物線y=x2+bx+c與x軸只有一個交點,且過點A(m,n),B(m+6,n),則n=     

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,排球運動員站在點O處練習(xí)發(fā)球,將球從點O正上方2米的點A處發(fā)出把球看成點,其運行的高度y(米)與運行的水平距離x(米)滿足關(guān)系式y(tǒng)=a(x﹣6)2+h,已知 球網(wǎng)與點O的水平距離為9米,高度為2.43米,球場的邊界距點O的水平距離為18米.
(1)當(dāng)h=2.6時,求y與x的函數(shù)關(guān)系式.
(2)當(dāng)h=2.6時,球能否越過球網(wǎng)?球會不會出界?請說明理由.
(3)若球一定能越過球網(wǎng),又不出邊界.則h的取值范圍是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

“丹棱凍粑”是眉山著名特色小吃,產(chǎn)品暢銷省內(nèi)外,現(xiàn)有一個產(chǎn)品銷售點在經(jīng)銷時發(fā)現(xiàn):如果每箱產(chǎn)品盈利10元,每天可售出50箱;若每箱產(chǎn)品漲價1元,日銷售量將減少2箱.
(1)現(xiàn)該銷售點每天盈利600元,同時又要顧客得到實惠,那么每箱產(chǎn)品應(yīng)漲價多少元?
(2)若該銷售點單純從經(jīng)濟角度考慮,每箱產(chǎn)品應(yīng)漲價多少元才能獲利最高?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標系中, 拋物線+與直線交于A, B兩點,點A在點B的左側(cè).
(1)如圖1,當(dāng)時,直接寫出A,B兩點的坐標;
(2)在(1)的條件下,點P為拋物線上的一個動點,且在直線AB下方,試求出△ABP面積的最大值及此時點P的坐標;
(3)如圖2,拋物線+ 軸交于C,D兩點(點C在點D的左側(cè)).在直線上是否存在唯一一點Q,使得∠OQC=90°?若存在,請求出此時的值;若不存在,請說明理由.

圖1                                   圖2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:計算題

如圖所示,已知平面直角坐標系xOy,拋物線過點A(4,0)、B(1,3)

【小題1】求該拋物線的表達式,并寫出該拋物線的對稱軸和頂點坐標;
【小題2】記該拋物線的對稱軸為直線l,設(shè)拋物線上的點P(m,n)在第四象限,點P關(guān)于直線l的對稱點為E,點E關(guān)于y軸的對稱點為F,若四邊形OAPF的面積為20,求m、n的值.

查看答案和解析>>

同步練習(xí)冊答案