18、點(-1,3)不在直線(  )上.
分析:將點(-1,3)分別代入解析式,若等式成立,則點在直線上,若等式不成立,則點不在直線上.
解答:解:A、將點(-1,3)代入y=-2x+1得,3=-2×(-1)+1,成立,點(-1,3)在直線上;
B、將點(-1,3)代入y=3x-6得,3≠3×(-1)-6,不成立,點(-1,3)不在直線上;
C、將點(-1,3)代入y=-x+2得,3=-(-1)+2,成立,點(-1,3)在直線上;
D、將點(-1,3)代入y=2x+5得,3=2×(-1)+5,成立,點(-1,3)在直線上.
故選B.
點評:此題考查了函數(shù)圖象上點的坐標特征,將坐標代入解析式即可驗證點是否在函數(shù)圖象上.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,在矩形ABCD中,AB=4,AD=10,直角尺的直角頂點P在AD上滑動時(點P與A,D不重合),精英家教網一直角邊經過點C,另一直角邊AB交于點E,我們知道,結論“Rt△AEP∽Rt△DPC”成立.
(1)當∠CPD=30°時,求AE的長;
(2)是否存在這樣的點P,使△DPC的周長等于△AEP周長的2倍?若存在,求出DP的長;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖1,在等腰梯形ABCD中,AB∥CO,E是AO的中點,過點E作EF∥OC交BC于F,AO=4,OC=6,∠AOC=60°.現(xiàn)把梯形ABCO放置在平面直角坐標系中,使點O與原點重合,OC在x軸正半軸上,點A、B在第一象限內.
(1)求點E的坐標;
(2)點P為線段EF上的一個動點,過點P作PM⊥EF交OC于點M,過M作MN∥AO交折線ABC于點N,連接PN.設PE=x.△PMN的面積為S.
①求S關于x的函數(shù)關系式;
②△PMN的面積是否存在最大值,若不存在,請說明理由.若存在,求出面積的最大值;
(3)另有一直角梯形EDGH(H在EF上,DG落在OC上,∠EDG=90°,且DG=3,HG∥BC).現(xiàn)在開始操作:固定等腰梯形ABCO,將直角梯形EDGH以每秒1個單位的速度沿OC方向向右移動,直到點D與點C重合時停止(如圖2).設運動時間為t秒,運動后的直角梯形為E′D′G′H′;探究:在運動過程中,等腰梯ABCO與直角梯形E′D′G′H′重合部分的面積y與時間t的函數(shù)關系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•南通一模)已知:如圖,直y=2x+b交x軸于點B,交y軸于點C,點A為x軸正半軸上一點,AO=CO,△ABC的面積為12.
(1)求b的值;
(2)若點P是線段AB中垂線上的點,是否存在這樣的點P,使△PBC成為直角三角形?若存在,試直接寫出所有符合條件的點P的坐標;若不存在,試說明理由;
(3)點Q為線段AB上一個動點(點Q與點A、B不重合),QE∥AC,交BC于點E,以QE為邊,在點B的異側作正方形QEFG.設AQ=m,△ABC與正方形QEFG的重疊部分的面積為S,試求S與m之間的函數(shù)關系式,并寫出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在矩形ABCD中,AB=6,AD=11.直角尺的直角頂點P在AD上滑動時(點P與A,D不重合),一直角邊始終經過點C,另一直角邊與AB交于點E.
(1)△CDP與△PAE相似嗎?如果相似,請寫出證明過程;
(2)當∠PCD=30°時,求AE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知線段AB=4,點C是平面上一點(不與A,B重合),M、N分別是線段CA,CB的中點.
(1)當C在線段AB上時,如圖,求MN的長;
(1)當C在線段AB的延長線上時,畫出圖形,并求MN長;
(2)當C在直段AB外時,畫出圖形,量一量,寫出MN的長(不寫理由)

查看答案和解析>>

同步練習冊答案