【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于點A(﹣1,0),與y軸的交點B在(0,﹣2)和(0,﹣1)之間(不包括這兩點),對稱軸為直線x=1.下列結(jié)論:
①abc>0
②4a+2b+c>0
③4ac﹣b2<8a
<a<
⑤b>c.
其中含所有正確結(jié)論的選項是(  )

A.①③
B.①③④
C.②④⑤
D.①③④⑤

【答案】D
【解析】解:①∵函數(shù)開口方向向上,
∴a>0;
∵對稱軸在原點左側(cè)
∴ab異號,
∵拋物線與y軸交點在y軸負半軸,
∴c<0,
∴abc>0,
故①正確;
②∵圖象與x軸交于點A(﹣1,0),對稱軸為直線x=﹣1,
∴圖象與x軸的另一個交點為(3,0),
∴當x=2時,y<0,
∴4a+2b+c<0,
故②錯誤;
③∵圖象與x軸交于點A(﹣1,0),
∴當x=﹣1時,y=(﹣1)2a+b×(﹣1)+c=0,
∴a﹣b+c=0,即a=b﹣c,c=b﹣a,
∵對稱軸為直線x=1
=1,即b=﹣2a,
∴c=b﹣a=(﹣2a)﹣a=﹣3a,
∴4ac﹣b2=4a(﹣3a)﹣(﹣2a)2=﹣16a2<0
∵8a>0
∴4ac﹣b2<8a
故③正確
④∵圖象與y軸的交點B在(0,﹣2)和(0,﹣1)之間,
∴﹣2<c<﹣1
∴﹣2<﹣3a<﹣1,
>a>
故④正確
⑤∵a>0,
∴b﹣c>0,即b>c;
故⑤正確;
故選:D.
【考點精析】本題主要考查了二次函數(shù)的性質(zhì)的相關(guān)知識點,需要掌握增減性:當a>0時,對稱軸左邊,y隨x增大而減小;對稱軸右邊,y隨x增大而增大;當a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小才能正確解答此題.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是不倒翁的正視圖,不倒翁的圓形臉恰好與帽子邊沿PA、PB分別相切于點A、B,不倒翁的鼻尖正好是圓心O,若∠OAB=25°,求∠APB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,正方形紙片ABCD的邊長為2,翻折∠B、∠D,使兩個直角的頂點重合于對角線BD上一點P、EF、GH分別是折痕(如圖2).設(shè)AE=x(0<x<2),給出下列判斷:
①當x=1時,點P是正方形ABCD的中心;
②當x= 時,EF+GH>AC;
③當0<x<2時,六邊形AEFCHG面積的最大值是3;
④當0<x<2時,六邊形AEFCHG周長的值不變.
其中正確的選項是( )

A.①③
B.①②④
C.①③④
D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于點A、B兩點,與y軸交于點C,對稱軸為直線x=﹣1,點B的坐標為(1,0),則下列結(jié)論:①AB=4;②b2﹣4ac>0;③ab<0;④a2﹣ab+ac<0,其中正確的結(jié)論有( )個.
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點F在ABCD的對角線AC上,過點F、B分別作AB、AC的平行線相交于點E,連接BF,∠ABF=∠FBC+∠FCB.
(1)求證:四邊形ABEF是菱形;
(2)若BE=5,AD=8,sin∠CBE= ,求AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校校園內(nèi)有一個大正方形花壇,如圖甲所示,它由四個邊長為3米的小正方形組成,且每個小正方形的種植方案相同.其中的一個小正方形ABCD如圖乙所示,DG=1米,AE=AF=x米,在五邊形EFBCG區(qū)域上種植花卉,則大正方形花壇種植花卉的面積y與x的函數(shù)圖象大致是( 。

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,二次函數(shù)y=ax2+bx的圖象過點A(﹣1,3),頂點B的橫坐標為1.

(1)求這個二次函數(shù)的表達式;
(2)點P在該二次函數(shù)的圖象上,點Q在x軸上,若以A、B、P、Q為頂點的四邊形是平行四邊形,求點P的坐標;
(3)如圖3,一次函數(shù)y=kx(k>0)的圖象與該二次函數(shù)的圖象交于O、C兩點,點T為該二次函數(shù)圖象上位于直線OC下方的動點,過點T作直線TM⊥OC,垂足為點M,且M在線段OC上(不與O、C重合),過點T作直線TN∥y軸交OC于點N.若在點T運動的過程中, 為常數(shù),試確定k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正方形OABC的邊長為4,對角線相交于點P,拋物線L經(jīng)過O、P、A三點,點E是正方形內(nèi)的拋物線上的動點.

(1)建立適當?shù)钠矫嬷苯亲鴺讼担?/span>
①直接寫出O、P、A三點坐標;
②求拋物線L的解析式;
(2)求△OAE與△OCE面積之和的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一段筆直的公路AC長20千米,途中有一處休息點B,AB長15千米,甲、乙兩名長跑愛好者同時從點A出發(fā),甲以15千米/時的速度勻速跑至點B,原地休息半小時后,再以10千米/時的速度勻速跑至終點C;乙以12千米/時的速度勻速跑至終點C,下列選項中,能正確反映甲、乙兩人出發(fā)后2小時內(nèi)運動路程y(千米)與時間x(小時)函數(shù)關(guān)系的圖象是(  )
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案