【題目】如圖,拋物線y=x2+bx+c與直線y= x﹣3交于A、B兩點(diǎn),其中點(diǎn)A在y軸上,點(diǎn)B坐標(biāo)為(﹣4,﹣5),點(diǎn)P為y軸左側(cè)的拋物線上一動(dòng)點(diǎn),過(guò)點(diǎn)P作PC⊥x軸于點(diǎn)C,交AB于點(diǎn)D.

(1)求拋物線的解析式;
(2)以O(shè),A,P,D為頂點(diǎn)的平行四邊形是否存在?如存在,求點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.
(3)當(dāng)點(diǎn)P運(yùn)動(dòng)到直線AB下方某一處時(shí),過(guò)點(diǎn)P作PM⊥AB,垂足為M,連接PA使△PAM為等腰直角三角形,請(qǐng)直接寫(xiě)出此時(shí)點(diǎn)P的坐標(biāo).

【答案】
(1)

解:∵直線y= x﹣3交于A、B兩點(diǎn),其中點(diǎn)A在y軸上,

∴A(0,﹣3),

∵B(﹣4,﹣5),

,

,

∴拋物線解析式為y=x2+ x﹣3


(2)

解:存在,

設(shè)P(m,m2+ m﹣3),(m<0),

∴D(m, m﹣3),

∴PD=|m2+4m|

∵PD∥AO,

∴當(dāng)PD=OA=3,故存在以O(shè),A,P,D為頂點(diǎn)的平行四邊形,

∴|m2+4m|=3,

① 當(dāng)m2+4m=3時(shí),

∴m1=﹣2﹣ ,m2=﹣2+ (舍),

∴m2+ m﹣3=﹣1﹣ ,

∴P(﹣2﹣ ,﹣1﹣ ),

②當(dāng)m2+4m=﹣3時(shí),

∴m1=﹣1,m2=﹣3,

Ⅰ、m1=﹣1,

∴m2+ m﹣3=﹣ ,

∴P(﹣1,﹣ ),

Ⅱ、m2=﹣3,

∴m2+ m﹣3=﹣ ,

∴P(﹣3,﹣ ),

∴點(diǎn)P的坐標(biāo)為(﹣2﹣ ,﹣1﹣ ),(﹣1,﹣ ),(﹣3,﹣


(3)

解:方法一,如圖,

∵△PAM為等腰直角三角形,

∴∠BAP=45°,

∵直線AP可以看做是直線AB繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)45°所得,

設(shè)直線AP解析式為y=kx﹣3,

∵直線AB解析式為y= x﹣3,

∴k= =3,

∴直線AP解析式為y=3x﹣3,

聯(lián)立 ,

∴x1=0(舍)x2=﹣

當(dāng)x=﹣ 時(shí),y=﹣ ,

∴P(﹣ ,﹣ ).

方法二:如圖,

∵直線AB解析式為y= x﹣3,

∴直線AB與x軸的交點(diǎn)坐標(biāo)為E(6,0),

過(guò)點(diǎn)A作AF⊥AB交x軸于點(diǎn)F,

∵A(0,﹣3),

∴直線AF解析式為y=﹣2x﹣3,

∴直線AF與x軸的交點(diǎn)為F(﹣ ,0),

∴AE=3 ,AF= ,

過(guò)點(diǎn)A作∠EAF的角平分線交x軸于點(diǎn)G,與拋物線相較于點(diǎn)P,過(guò)點(diǎn)P作PM⊥AB,

∴∠EAG=45°,

∴∠BAP=45°,

即:△PAM為等腰直角三角形.

設(shè)點(diǎn)G(m,0),

∴EG=6﹣m.FG=m+ ,

根據(jù)角平分線定理得, ,

,

∴m=1,

∴G(1,0),

∴直線AG解析式為y=3x﹣3①,

∵拋物線解析式為y=x2+ x﹣3②,

聯(lián)立①②得,x=0(舍)或x=﹣ ,

∴y=﹣

∴P(﹣ ,﹣


【解析】(1)先確定出點(diǎn)A坐標(biāo),然后用待定系數(shù)法求拋物線解析式;(2)先確定出PD=|m2+4m|,當(dāng)PD=OA=3,故存在以O(shè),A,P,D為頂點(diǎn)的平行四邊形,得到|m2+4m|=3,分兩種情況進(jìn)行討論計(jì)算即可;(3)由△PAM為等腰直角三角形,得到∠BAP=45°,從而求出直線AP的解析式,最后求出直線AP和拋物線的交點(diǎn)坐標(biāo)即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線ABCD交于點(diǎn)O,且∠BOC=80°,OE平分∠BOC,OFOE的反向延長(zhǎng)線.

(1)求∠2和∠3的度數(shù);

(2)OF平分∠AOD嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,小明的家位于一條南北走向的河流MN的東側(cè)A處,某一天小明從家出發(fā)沿南偏西30°方向走60 m到達(dá)河邊B處取水,然后沿另一方向走80 m到達(dá)菜地C處澆水,最后沿第三方向走100 m回到家A處.問(wèn)小明在河邊B處取水后是沿哪個(gè)方向行走的?并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校初三(1)班部分同學(xué)接受一次內(nèi)容為“最適合自己的考前減壓方式”的調(diào)查活動(dòng),收集整理數(shù)據(jù)后,老師將減壓方式分為五類(lèi),并繪制了圖1、圖2兩個(gè)不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中的信息解答下列問(wèn)題.
(1)初三(1)班接受調(diào)查的同學(xué)共有多少名;
(2)補(bǔ)全條形統(tǒng)計(jì)圖,并計(jì)算扇形統(tǒng)計(jì)圖中的“體育活動(dòng)C”所對(duì)應(yīng)的圓心角度數(shù);
(3)若喜歡“交流談心”的5名同學(xué)中有三名男生和兩名女生;老師想從5名同學(xué)中任選兩名同學(xué)進(jìn)行交流,直接寫(xiě)出選取的兩名同學(xué)都是女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠AOB=120°,OC∠AOB內(nèi)部任意一條射線,OD、OE分別是∠AOC、∠BOC的角平分線,下列敘述正確的是( 。

A. ∠DOE的度數(shù)不能確定 B. ∠AOD=∠EOC

C. ∠AOD+∠BOE=60° D. ∠BOE=2∠COD

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,在長(zhǎng)方形ABCD,AB=12 cm,BC=6 cm.點(diǎn)P沿AB邊從點(diǎn)A開(kāi)始向點(diǎn)B2 cm/s的速度移動(dòng);點(diǎn)Q沿DA邊從點(diǎn)D開(kāi)始向點(diǎn)A1 cm/s的速度移動(dòng).

設(shè)點(diǎn)P,Q同時(shí)出發(fā),t(s)表示移動(dòng)的時(shí)間.

(發(fā)現(xiàn)) DQ________cm,AP________cm.(用含t的代數(shù)式表示)

(拓展)(1)如圖①,當(dāng)t________s時(shí),線段AQ與線段AP相等?

(2)如圖②,點(diǎn)P,Q分別到達(dá)B,A后繼續(xù)運(yùn)動(dòng),點(diǎn)P到達(dá)點(diǎn)C后都停止運(yùn)動(dòng).

當(dāng)t為何值時(shí)AQCP?

(探究)若點(diǎn)P,Q分別到達(dá)點(diǎn)B,A后繼續(xù)沿著ABCDA的方向運(yùn)動(dòng),當(dāng)點(diǎn)P與點(diǎn)Q第一次相遇時(shí),請(qǐng)直接寫(xiě)出相遇點(diǎn)的位置.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=AC,BAC=45°,ADBC于點(diǎn)D,BEAC于點(diǎn)E,且與AD交于點(diǎn)F.G是邊AB的中點(diǎn),連接EGAD于點(diǎn)H.

(1)求證:△AEF≌△BEC;

2)求證:CD=AF;

(3)若BD=2,求AH的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,OD垂直弦AC于點(diǎn)E,且交⊙O于點(diǎn)D,過(guò)點(diǎn)D作⊙O的切線與BA的延長(zhǎng)線相交于點(diǎn)F,下列結(jié)論不一定正確的是(
A.∠CDB=∠BFD
B.△BAC∽△OFD
C.DF∥AC
D.OD=BC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是生活中常見(jiàn)的月歷的示意圖,請(qǐng)結(jié)合圖示回答下列問(wèn)題.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

(1)如圖是另一個(gè)月的月歷,a表示該月中某一天,b,cd是該月中其他3,bc,d分別與a的關(guān)系:b________;c________d________(用含a的代數(shù)式填空).

(2)用一個(gè)長(zhǎng)方形框圈出月歷中的三個(gè)數(shù)( 圖中的陰影),若這三個(gè)數(shù)之和等于51,則這三個(gè)數(shù)分別是多少?

(3)這樣圈出的三個(gè)數(shù)的和可能是64嗎?為什么?

查看答案和解析>>

同步練習(xí)冊(cè)答案