【題目】在面積都相等的所有矩形中,當(dāng)其中一個(gè)矩形的一邊長(zhǎng)為1時(shí),它的另一邊長(zhǎng)為3.
(1)設(shè)矩形的相鄰兩邊長(zhǎng)分別為x,y.
①求y關(guān)于x的函數(shù)表達(dá)式;
②當(dāng)y≥3時(shí),求x的取值范圍;
(2)圓圓說(shuō)其中有一個(gè)矩形的周長(zhǎng)為6,方方說(shuō)有一個(gè)矩形的周長(zhǎng)為10,你認(rèn)為圓圓和方方的說(shuō)法對(duì)嗎?為什么?
【答案】
(1)
解:①由題意可得:xy=3,
則y= ;
②當(dāng)y≥3時(shí), ≥3
解得:x≤1
(2)
解:∵一個(gè)矩形的周長(zhǎng)為6,
∴x+y=3,
∴x+ =3,
整理得:x2﹣3x+3=0,
∵b2﹣4ac=9﹣12=﹣3<0,
∴矩形的周長(zhǎng)不可能是6;
∵一個(gè)矩形的周長(zhǎng)為10,
∴x+y=5,
∴x+ =5,
整理得:x2﹣5x+3=0,
∵b2﹣4ac=25﹣12=13>0,
∴矩形的周長(zhǎng)可能是10
【解析】(1)①直接利用矩形面積相等進(jìn)而得出y與x之間的關(guān)系;②直接利用y≥3得出x的取值范圍;
(2)直接利用x+y的值結(jié)合根的判別式得出答案.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用求根公式,掌握根的判別式△=b2-4ac,這里可以分為3種情況:1、當(dāng)△>0時(shí),一元二次方程有2個(gè)不相等的實(shí)數(shù)根2、當(dāng)△=0時(shí),一元二次方程有2個(gè)相同的實(shí)數(shù)根3、當(dāng)△<0時(shí),一元二次方程沒(méi)有實(shí)數(shù)根即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,雙曲線y= 經(jīng)過(guò)ABCD的頂點(diǎn)B,D.點(diǎn)D的坐標(biāo)為(2,1),點(diǎn)A在y軸上,且AD∥x軸,SABCD=5.
(1)填空:點(diǎn)A的坐標(biāo)為;
(2)求雙曲線和AB所在直線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖象交坐標(biāo)軸于A(﹣1,0),B(4,0),C(0,﹣4)三點(diǎn),點(diǎn)P是直線BC下方拋物線上一動(dòng)點(diǎn).
(1)求這個(gè)二次函數(shù)的解析式;
(2)是否存在點(diǎn)P,使△POC是以O(shè)C為底邊的等腰三角形?若存在,求出P點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)動(dòng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),△PBC面積最大,求出此時(shí)P點(diǎn)坐標(biāo)和△PBC的最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】矩形ABCD中,E、F分別是AD、BC的中點(diǎn),CE、AF分別交BD于G、H兩點(diǎn).
求證:
(1)四邊形AFCE是平行四邊形;
(2)證明:EG=FH.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,BC=12,E為AC邊的中點(diǎn),線段BE的垂直平分線交邊BC于點(diǎn)D.設(shè)BD=x,tan∠ACB=y,則( )
A.x﹣y2=3
B.2x﹣y2=9
C.3x﹣y2=15
D.4x﹣y2=21
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將矩形ABCD繞其右下角的頂點(diǎn)按順時(shí)針?lè)较蛐D(zhuǎn)90°至圖①位置,繼續(xù)繞右下角的頂點(diǎn)按順時(shí)針?lè)较蛐D(zhuǎn)90°至圖②位置,以此類推,這樣連續(xù)旋轉(zhuǎn)2017次.若AB=4,AD=3,則頂點(diǎn)A在整個(gè)旋轉(zhuǎn)過(guò)程中所經(jīng)過(guò)的路徑總長(zhǎng)為( )
A.2017π
B.2034π
C.3024π
D.3026π
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,信號(hào)塔PQ座落在坡度i=1:2的山坡上,其正前方直立著一警示牌.當(dāng)太陽(yáng)光線與水平線成60°角時(shí),測(cè)得信號(hào)塔PQ落在斜坡上的影子QN長(zhǎng)為2 米,落在警示牌上的影子MN長(zhǎng)為3米,求信號(hào)塔PQ的高.(結(jié)果不取近似值)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀理解:如圖1,⊙O與直線a、b都相切,不論⊙O如何轉(zhuǎn)動(dòng),直線a、b之間的距離始終保持不變(等于⊙O的直徑),我們把具有這一特性的圖形成為“等寬曲線”,圖2是利用圓的這一特性的例子,將等直徑的圓棍放在物體下面,通過(guò)圓棍滾動(dòng),用較小的力既可以推動(dòng)物體前進(jìn),據(jù)說(shuō),古埃及人就是利用這樣的方法將巨石推到金字塔頂?shù)模?拓展應(yīng)用:如圖3所示的弧三角形(也稱為萊洛三角形)也是“等寬曲線”,如圖4,夾在平行線c,d之間的萊洛三角形無(wú)論怎么滾動(dòng),平行線間的距離始終不變,若直線c,d之間的距離等于2cm,則萊洛三角形的周長(zhǎng)為cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2017寧夏)在邊長(zhǎng)為2的等邊三角形ABC中,P是BC邊上任意一點(diǎn),過(guò)點(diǎn) P分別作 PM⊥A B,PN⊥AC,M、N分別為垂足.
(1)求證:不論點(diǎn)P在BC邊的何處時(shí)都有PM+PN的長(zhǎng)恰好等于三角形ABC一邊上的高;
(2)當(dāng)BP的長(zhǎng)為何值時(shí),四邊形AMPN的面積最大,并求出最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com