【題目】某中學(xué)課外興趣活動(dòng)小組準(zhǔn)備圍建一個(gè)矩形苗圃園,其中一邊靠墻,另外三邊用長(zhǎng)為30米的籬笆圍成,已知墻長(zhǎng)為18米(如圖所示),設(shè)這個(gè)苗圃園垂直于墻的一邊的長(zhǎng)為x米.

(1)若苗圃園的面積為72平方米,求x;
(2)若平行于墻的一邊長(zhǎng)不小于8米,這個(gè)苗圃園的面積有最大值和最小值嗎?如果有,求出最大值和最小值;如果沒有,請(qǐng)說明理由;
(3)當(dāng)這個(gè)苗圃園的面積不小于100平方米時(shí),直接寫出x的取值范圍.

【答案】
(1)解:根據(jù)題意得:(30﹣2x)x=72,

解得:x=3,x=12,

∵30﹣2x≤18,

∴x=12;


(2)解:設(shè)苗圃園的面積為y,

∴y=x(30﹣2x)=﹣2x2+30x,

∵a=﹣2<0,

∴苗圃園的面積y有最大值,

∴當(dāng)x= 時(shí),即平行于墻的一邊長(zhǎng)15>8米,y最大=112.5平方米;

∵6≤x≤11,

∴當(dāng)x=11時(shí),y最小=88平方米;


(3)解:由題意得:﹣2x2+30x≥100,

∵30﹣2x≤18

解得:6≤x≤10.


【解析】(1)設(shè)這個(gè)苗圃園垂直于墻的一邊的長(zhǎng)為x米.則與墻平行的一邊長(zhǎng)為(30﹣2x)米,根據(jù)苗圃園的面積為72平方米,列出方程求解檢驗(yàn)即可;
(2)設(shè)苗圃園的面積為y,由矩形面積公式得出y與x的函數(shù)關(guān)系式,根據(jù)拋物線的開口向下,得出苗圃園的面積y有最大值,當(dāng)x= 時(shí),即平行于墻的一邊長(zhǎng)15>8米,y最大=112.5平方米;6≤x≤11,當(dāng)x=11時(shí),y最小=88平方米;
(3)由這個(gè)苗圃園的面積不小于100平方米得出不等式,求解得出x6,聯(lián)立題意得出x的取值范圍。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】a≠0,函數(shù)y= 與y=﹣ax2+a在同一直角坐標(biāo)系中的大致圖象可能是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題情境:如圖1,ABCD,PAB=130°,PCD=120°.求APC度數(shù).

小明的解題思路是:如圖2,過P作PEAB,通過平行線性質(zhì),可得APC=50°+60°=110°.

問題遷移:

(1)如圖3,ADBC,點(diǎn)P在射線OM上運(yùn)動(dòng),當(dāng)點(diǎn)P在A、B兩點(diǎn)之間運(yùn)動(dòng)時(shí),ADP=α,BCP=β.試判斷CPD、α、β之間有何數(shù)量關(guān)系?請(qǐng)說明理由;

(2)在(1)的條件下,如果點(diǎn)P在A、B兩點(diǎn)外側(cè)運(yùn)動(dòng)時(shí)(點(diǎn)P與點(diǎn)A、B、O三點(diǎn)不重合),請(qǐng)你直接寫出CPD、α、β間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,每個(gè)小正方形的邊長(zhǎng)都是1的方格紙中,有線段AB和線段CD,點(diǎn)A、B、C、D的端點(diǎn)都在小正方形的頂點(diǎn)上.

(1)①在方格紙中畫出一個(gè)以線段AB為一邊的菱形ABEF,所畫的菱形的各頂點(diǎn)必須在小正方形的頂點(diǎn)上,并且其面積為20.
②在方格紙中以CD為底邊畫出等腰三角形CDK,點(diǎn)K在小正方形的頂點(diǎn)上,且△CDK的面積為5.
(2)在(1)的條件下,連接BK,請(qǐng)直接寫出線段BK的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣ x2+bx+c與x軸交于點(diǎn)A和點(diǎn)B,與y軸交于點(diǎn)C,點(diǎn)B坐標(biāo)為(6,0),點(diǎn)C坐標(biāo)為(0,6),點(diǎn)D是拋物線的頂點(diǎn),過點(diǎn)D作x軸的垂線,垂足為E,連接BD.

(Ⅰ)求拋物線的解析式及點(diǎn)D的坐標(biāo);
(Ⅱ)點(diǎn)F是拋物線上的動(dòng)點(diǎn),當(dāng)∠FBA=∠BDE時(shí),求點(diǎn)F的坐標(biāo);
(Ⅲ)若點(diǎn)M是拋物線上的動(dòng)點(diǎn),過點(diǎn)M作MN∥x軸與拋物線交于點(diǎn)N,點(diǎn)P在x軸上,點(diǎn)Q在坐標(biāo)平面內(nèi),以線段MN為對(duì)角線作正方形MPNQ,請(qǐng)寫出點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直線CD經(jīng)過的頂點(diǎn)C,CA=CBE、F分別是直線CD上兩點(diǎn),且

1)若直線CD經(jīng)過的內(nèi)部,且EF在射線CD上,請(qǐng)解決下面兩個(gè)問題:

如圖1,若,則 (填,號(hào));

如圖2,若,若使中的結(jié)論仍然成立,則應(yīng)滿足的關(guān)系是 ;

2)如圖3,若直線CD經(jīng)過的外部,,請(qǐng)?zhí)骄?/span>EF、與BE、AF三條線段的數(shù)量關(guān)系,并給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(2,4),B(2,1),C(5,2)

(1)請(qǐng)畫出ABC關(guān)于x軸對(duì)稱的A1B1C1;

(2)A1B1C1的三個(gè)頂點(diǎn)的橫坐標(biāo)與縱坐標(biāo)同時(shí)乘-2,得到對(duì)應(yīng)的點(diǎn)A2,B2,C2,請(qǐng)畫出A2B2C2;

(3)寫出A1B1C1的面積;A2B2C2的面積.(不寫解答過程,直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,菱形OABC的頂點(diǎn)A在x軸正半軸上,頂點(diǎn)C的坐標(biāo)為(4,3),D是拋物線y=﹣x2+6x上一點(diǎn),且在x軸上方,則△BCD面積的最大值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,∠B=30°,BC=3.點(diǎn)D是BC邊上的一動(dòng)點(diǎn)(不與點(diǎn)B、C重合),過點(diǎn)D作DE⊥BC交AB于點(diǎn)E,將∠B沿直線DE翻折,點(diǎn)B落在射線BC上的點(diǎn)F處.當(dāng)△AEF為直角三角形時(shí),BD的長(zhǎng)為

查看答案和解析>>

同步練習(xí)冊(cè)答案