如圖,已知拋物線y=x2+bx+c經(jīng)過A(1,0),B(0,2)兩點,頂點為D.
(1)求拋物線的解析式;
(2)將△OAB繞點A順時針旋轉(zhuǎn)90°后,點B落到點C的位置,將拋物線沿y軸平移后經(jīng)過點C,求平移后所得圖象的函數(shù)關(guān)系式;
(3)設(shè)(2)中平移后,所得拋物線與y軸的交點為B1,頂點為D1,若點N在平移后的拋物線上,且滿足△NBB1的面積是△NDD1面積的2倍,求點N的坐標(biāo).

【答案】分析:(1)利用待定系數(shù)法,將點A,B的坐標(biāo)代入解析式即可求得;
(2)根據(jù)旋轉(zhuǎn)的知識可得:A(1,0),B(0,2),∴OA=1,OB=2,
可得旋轉(zhuǎn)后C點的坐標(biāo)為(3,1),當(dāng)x=3時,由y=x2-3x+2得y=2,可知拋物線y=x2-3x+2過點(3,2)∴將原拋物線沿y軸向下平移1個單位后過點C.∴平移后的拋物線解析式為:y=x2-3x+1;
(3)首先求得B1,D1的坐標(biāo),根據(jù)圖形分別求得即可,要注意利用方程思想.
解答:解:(1)已知拋物線y=x2+bx+c經(jīng)過A(1,0),B(0,2),
,
解得
∴所求拋物線的解析式為y=x2-3x+2;(2分)

(2)∵A(1,0),B(0,2),
∴OA=1,OB=2,
可得旋轉(zhuǎn)后C點的坐標(biāo)為(3,1),(3分)
當(dāng)x=3時,由y=x2-3x+2得y=2,
可知拋物線y=x2-3x+2過點(3,2),
∴將原拋物線沿y軸向下平移1個單位后過點C.
∴平移后的拋物線解析式為:y=x2-3x+1;(5分)

(3)∵點N在y=x2-3x+1上,可設(shè)N點坐標(biāo)為(x,x2-3x+1),
將y=x2-3x+1配方得y=(x-2-,
∴其對稱軸為直線x=.(6分)
①0≤x時,如圖①,
,

∵x=1,
此時x2-3x+1=-1,
∴N點的坐標(biāo)為(1,-1).(8分)
②當(dāng)時,如圖②,
同理可得,
∴x=3,
此時x2-3x+1=1,
∴點N的坐標(biāo)為(3,1).
③當(dāng)x<0時,由圖可知,N點不存在,
∴舍去.
綜上,點N的坐標(biāo)為(1,-1)或(3,1).(10分)
點評:此題屬于中考中的壓軸題,難度較大,知識點考查的較多而且聯(lián)系密切,需要學(xué)生認(rèn)真審題.
此題考查了二次函數(shù)與一次函數(shù)的綜合知識,解題的關(guān)鍵是要注意數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線與x軸交于A(-1,0)、B(4,0)兩點,與y軸交于點精英家教網(wǎng)C(0,3).
(1)求拋物線的解析式;
(2)求直線BC的函數(shù)解析式;
(3)在拋物線上,是否存在一點P,使△PAB的面積等于△ABC的面積,若存在,求出點P的坐標(biāo),若不存在,請說明理由.
(4)點Q是直線BC上的一個動點,若△QOB為等腰三角形,請寫出此時點Q的坐標(biāo).(可直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為x=1,且拋物線經(jīng)過A(-1,0)精英家教網(wǎng)、C(0,-3)兩點,與x軸交于另一點B.
(1)求這條拋物線所對應(yīng)的函數(shù)關(guān)系式;
(2)在拋物線的對稱軸x=1上求一點M,使點M到點A的距離與到點C的距離之和最小,并求出此時點M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•衡陽)如圖,已知拋物線經(jīng)過A(1,0),B(0,3)兩點,對稱軸是x=-1.
(1)求拋物線對應(yīng)的函數(shù)關(guān)系式;
(2)動點Q從點O出發(fā),以每秒1個單位長度的速度在線段OA上運動,同時動點M從O點出發(fā)以每秒3個單位長度的速度在線段OB上運動,過點Q作x軸的垂線交線段AB于點N,交拋物線于點P,設(shè)運動的時間為t秒.
①當(dāng)t為何值時,四邊形OMPQ為矩形;
②△AON能否為等腰三角形?若能,求出t的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=1,且拋物線經(jīng)過A(-1,0)、C(0,-3)兩點,與x軸交于另一點B.
(1)求這條拋物線所對應(yīng)的函數(shù)關(guān)系式;
(2)點P是拋物線對稱軸上一點,若△PAB∽△OBC,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線y=ax2+bx+c的頂點是(-1,-4),且與x軸交于A、B(1,0)兩點,交y軸于點C;
(1)求此拋物線的解析式;
(2)①當(dāng)x的取值范圍滿足條件
-2<x<0
-2<x<0
時,y<-3;
     ②若D(m,y1),E(2,y2)是拋物線上兩點,且y1>y2,求實數(shù)m的取值范圍;
(3)直線x=t平行于y軸,分別交線段AC于點M、交拋物線于點N,求線段MN的長度的最大值;
(4)若以拋物線上的點P為圓心作圓與x軸相切時,正好也與y軸相切,求點P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案