圓柱的底面半徑為1,母線長為2,則它的側(cè)面積為    .(結(jié)果保留π)
【答案】分析:圓柱側(cè)面積=底面周長×高.
解答:解:根據(jù)圓柱的側(cè)面積公式可得π×2×1×2=4π.
點評:本題主要考查了圓柱的側(cè)面積的計算方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

17、如果一個圓柱的底面半徑為1米,它的高為2米,那么這個圓柱的全面積為
平方米.(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

6、如果圓柱的底面半徑為1.高為3,那么圓柱側(cè)面展開圖的面積為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1998•東城區(qū))若圓柱的底面半徑為3,高為8,則圓柱的表面積為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2010•邢臺一模)如圖所示,一圓柱高AB為5cm,BC是底面直徑,設(shè)底面半徑長度為acm,求點P從A點出發(fā)沿圓柱表面移動到點C的最短路線.

方案設(shè)計
某班數(shù)學(xué)興趣小組設(shè)計了兩種方案:
圖1是方案一的示意圖,該方案中的移動路線的長度為l1,則l1=5+2a(cm);
圖2是方案二的示意圖,設(shè)l2是把圓柱沿AB側(cè)面展開的線段AC的長度,則l2=
25+π2a2
25+π2a2
cm(保留π).
計算探究

①當a=3時,比較大。簂1
 l2(填“>”“=”或“<”);
②當a=4時,比較大。簂1
 l2(填“>”“=”或“<”);
延伸拓展
在一般情況下,設(shè)圓柱的底面半徑為rcm.高為hcm.
①若l12=l22,求h與r之間的關(guān)系;
②假定r取定值,那么h取何值時,l1<l2
③假定r取定值,那么h取何值時,l1>l2?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

(2013•貴陽模擬)請閱讀下列材料:
問題:如圖1,圓柱的底面半徑為1dm,BC是底面直徑,圓柱高AB為5dm,求一只螞蟻從點A出發(fā)沿圓柱表面爬行到點C的最短路線,小明設(shè)計了兩條路線:
路線1:高線AB+底面直徑BC,如圖1所示.路線2:側(cè)面展開圖中的線段AC,如圖2所示.(結(jié)果保留π)

(1)設(shè)路線1的長度為L1,則L12=
49
49
.設(shè)路線2的長度為L2,則L22=
25+π2
25+π2
.所以選擇路線
2
2
(填1或2)較短.
(2)小明把條件改成:“圓柱的底面半徑為5dm,高AB為1dm”繼續(xù)按前面的路線進行計算.此時,路線1:L12=
121
121
.路線2:L22=
1+25π2
1+25π2
.所以選擇路線
1
1
(填1或2)較短.
(3)請你幫小明繼續(xù)研究:當圓柱的底面半徑為2dm,高為hdm時,應(yīng)如何選擇上面的兩條路線才能使螞蟻從點A出發(fā)沿圓柱表面爬行到點C的路線最短.

查看答案和解析>>

同步練習(xí)冊答案