【題目】如圖,拋物線y=ax2+bx+c與x軸交于A(﹣1,0),B(4,0)與y軸交于點(diǎn)C(0,2),拋物線的對稱軸交x軸于點(diǎn)D.
(1)求拋物線的表達(dá)式;
(2)在拋物線的對稱軸是否存在點(diǎn)P,使△PCD是以CD為腰的等腰三角形,如果存在,求出P點(diǎn)的坐標(biāo),若不存在,請說明理由;
(3)點(diǎn)E是線段BC上的一個(gè)動(dòng)點(diǎn),過點(diǎn)E作x軸的垂線與拋物線相交于點(diǎn)F,當(dāng)點(diǎn)E運(yùn)動(dòng)到什么位置時(shí),四邊形CDBF的面積最大?并求出四邊形CDBF的最大面積及此時(shí)E點(diǎn)的坐標(biāo).
【答案】
(1)
解:把A(﹣1,0),B(4,0),C(0,2)代入y=ax2+bx+c中得: ,
解得: .
故拋物線的表達(dá)式為:y=﹣ x2+ x+2
(2)
解:y=﹣ x2+ x+2=﹣ (x﹣ )2+ ;
則D( ,0),
在Rt△OCD中,OC=2,OD= ,
由勾股定理得:CD= = ,
如圖1,
①當(dāng)CD=DP1時(shí),△PCD是等腰三角形,
∴P1( , ),
②當(dāng)CD=DP2時(shí),△PCD是等腰三角形,
∴P2( ,﹣ ),
③當(dāng)CD=CP3時(shí),△PCD是等腰三角形,
過C作CE⊥DP1于E,
∵C(0,2),
∴DE=OC=2,
∵CD=CP3,
∴DE=P3E=2,
∴P3( ,4),
綜上所述,P點(diǎn)的坐標(biāo)為:P1( , ),P2( ,﹣ ),P3( ,4)
(3)
解:如圖2,
∵A(﹣1,0),對稱軸是:x= ,
∴B(4,0),
設(shè)BC的解析式為:y=kx+b,
把B(4,0),C(0,2)代入得: ,
解得: ,
∴BC的解析式為:y=﹣ x+2,
設(shè)E(m,﹣ m+2),F(xiàn)(m,﹣ m2+ m+2),
∴EF=﹣ m2+ m+2﹣(﹣ m+2)=﹣ m2+2m,
∴S四邊形BDCF=S△BCD+S△BFC= BDOC+ EFOB= × ×2+ (﹣ m2+2m)×4,
S=﹣m2+4m+2.5=﹣(m﹣2)2+6.5(0<m<4),
當(dāng)m=2時(shí),﹣ m+2=﹣ ×2+2=1,
∴當(dāng)m=2時(shí),四邊形CDBF的面積最大,最大為6.5,此時(shí)E(2,1).
【解析】(1)利用待定系數(shù)法求拋物線的表達(dá)式;(2)以CD為腰的等腰三角形有三個(gè):①②以D為圓心,以CD為半徑畫弧交對稱軸于P1、P2 , ③以C為圓心,以CD為半徑畫弧,交對稱軸于P3 , 分別求出這三個(gè)點(diǎn)的坐標(biāo);(3)先根據(jù)對稱性求點(diǎn)B的坐標(biāo)為(4,0),再求直線BC的解析式,設(shè)出點(diǎn)E和F的坐標(biāo),表示EF的長;則四邊形BDCF的面積等于兩個(gè)三角形面積的和,其中△BDC是定值,△BFC的面積=鉛直高度與水平寬度的積,代入面積公式可求得S的解析式,求最值即可.
【考點(diǎn)精析】關(guān)于本題考查的坐標(biāo)與圖形變化-對稱,需要了解關(guān)于x軸對稱的點(diǎn)的特征:兩個(gè)點(diǎn)關(guān)于x軸對稱時(shí),它們的坐標(biāo)中,x相等,y的符號相反,即點(diǎn)P(x,y)關(guān)于x軸的對稱點(diǎn)為P’(x,-y);關(guān)于y軸對稱的點(diǎn)的特征:兩個(gè)點(diǎn)關(guān)于y軸對稱時(shí),它們的坐標(biāo)中,y相等,x的符號相反,即點(diǎn)P(x,y)關(guān)于y軸的對稱點(diǎn)為P’(-x,y)才能得出正確答案.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長為的等邊三角形的頂點(diǎn)分別在邊,上當(dāng)在邊上運(yùn)動(dòng)時(shí),隨之在邊上運(yùn)動(dòng),等邊三角形的形狀保持不變,運(yùn)動(dòng)過程中,點(diǎn)到點(diǎn)的最大距離為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲乙兩家綠化養(yǎng)護(hù)公司各自推出了校園綠化養(yǎng)護(hù)服務(wù)的收費(fèi)方案.
甲公司方案:每月的養(yǎng)護(hù)費(fèi)用y(元)與綠化面積x(平方米)是一次函數(shù)關(guān)系,如圖所示.
乙公司方案:綠化面積不超過1000平方米時(shí),每月收取費(fèi)用5500元;綠化面積超過1000平方米時(shí),每月在收取5500元的基礎(chǔ)上,超過部分每平方米收取4元.
(1)求如圖所示的y與x的函數(shù)解析式;(不要求寫取值范圍)
(2)如果某學(xué)校目前的綠化面積是1200平方米.試通過計(jì)算說明:選擇哪家公司的服務(wù),每月的綠化養(yǎng)護(hù)費(fèi)用較少.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知長方形ABCD,AB=1,BC=2,點(diǎn)M為矩形內(nèi)一點(diǎn),點(diǎn)E為BC邊上任意一點(diǎn),則MA+MD+ME的最小值為( )
A. 1 B. 1+ C. 2+ D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】同學(xué)們都知道,表示5與-2之差的絕對值,實(shí)際上也可理解為5與-2兩數(shù)在數(shù)軸上所對應(yīng)的兩點(diǎn)之間的距離,試探索:
(1)求=________.
(2)若=5,則x=____.
(3)同理表示數(shù)軸上有理數(shù)x所對應(yīng)的點(diǎn)到-1和2所對應(yīng)的兩點(diǎn)距離之和,請你找出所有符合條件的整數(shù)x,使得=3,這樣的整數(shù)是________(直接寫答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABO縮小后變?yōu)椤鰽′B′O,其中A、B的對應(yīng)點(diǎn)分別為A′、B′點(diǎn)A、B、A′、B′均在圖中在格點(diǎn)上.若線段AB上有一點(diǎn)P(m,n),則點(diǎn)P在A′B′上的對應(yīng)點(diǎn)P′的坐標(biāo)為( )
A.( ,n)
B.(m,n)
C.(m, )
D.( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠BAC=∠DAF=90°,AB=AC,AD=AF,點(diǎn)D、E為BC邊上的兩點(diǎn),且∠DAE=45°,連接EF、BF,則下列結(jié)論: ①△AED≌△AEF;②△ABE∽△ACD;③BE+DC>DE;④BE2+DC2=DE2 , 其中正確的有( )個(gè).
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠現(xiàn)有甲種原料360千克,乙種原料290千克,計(jì)劃利用這兩種原料生產(chǎn)A、B兩種產(chǎn)品共50件,已知生產(chǎn)一件A種產(chǎn)品用甲種原料9千克,乙種原料3千克,可獲利700元;生產(chǎn)一件B種產(chǎn)品用甲種原料4千克,乙種原料10千克,可獲利1200元.
(1)按要求安排A、B兩種產(chǎn)品的生產(chǎn)件數(shù),有哪幾種方案?請你設(shè)計(jì)出來;
(2)設(shè)生產(chǎn)A、B兩種產(chǎn)品總利潤為y元,其中一種產(chǎn)品生產(chǎn)件數(shù)為x件,試寫出y與x之間的函數(shù)關(guān)系式,并利用函數(shù)的性質(zhì)說明那種方案獲利最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖的平面直角坐標(biāo)系中有一個(gè)正六邊形ABCDEF,其中C.D的坐標(biāo)分別為(1,0)和(2,0).若在無滑動(dòng)的情況下,將這個(gè)六邊形沿著x軸向右滾動(dòng),則在滾動(dòng)過程中,這個(gè)六邊形的頂點(diǎn)A.B.C.D.E、F中,會過點(diǎn)(45,2)的是點(diǎn) ▲ .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com