已知:如圖,AB是⊙O的弦,⊙O的半徑為10,OE、OF分別交AB于點E、F,OF的延長線交⊙O于點D,且AE=BF,∠EOF=60°.
(1)求證:△OEF是等邊三角形;
(2)當AE=OE時,求陰影部分的面積.(結(jié)果保留根號和π)
解:(1)證明:作OC⊥AB于點C,
∵OC⊥AB,∴AC=BC。
∵AE=BF,∴EC=FC。
∵OC⊥EF,∴OE=OF。
∵∠EOF=60°,∴△OEF是等邊三角形。;
(2)∵在等邊△OEF中,∠OEF=∠EOF=60°,AE=OE,∴∠A=∠AOE=30°。∴∠AOF=90°。
∵AO=10,∴。
∴。
∴。
【解析】
試題分析:(1)作OC⊥AB于點C,由OC⊥AB可知AC=BC,再根據(jù)AE=BF可知EC=FC,因為OC⊥EF,所以O(shè)E=OF,再由∠EOF=60°即可得出結(jié)論。
(2)在等邊△OEF中,因為∠OEF=∠EOF=60°,AE=OE,所以∠A=∠AOE=30°,故∠AOF=90°,再由AO=10可求出OF的長,根據(jù)S陰影=S扇形AOD﹣S△AOF即可得出結(jié)論。
科目:初中數(shù)學 來源: 題型:
5 | 13 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
AD |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com