【題目】如圖,在等邊三角形ABC中,BC=6,射線AG∥BC,點(diǎn)E從點(diǎn)A出發(fā)沿射線AG以的速度運(yùn)動(dòng),同時(shí)點(diǎn)F從點(diǎn)B出發(fā)沿射線BC以的速度運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為
(1)連接EF,當(dāng)EF經(jīng)過(guò)AC邊的中點(diǎn)D時(shí),求證:△ADE≌△CDF
(2)填空:
①當(dāng)為 s時(shí),四邊形ACFE是菱形;
②當(dāng)為 s時(shí),以A,F,C,E為頂點(diǎn)的四邊形是直角梯形.
【答案】(1)見(jiàn)解析;(2)①6; ②
【解析】
(1)∵AG∥BC,
∴∠EAD=∠ACB.
∵D是AC邊的中點(diǎn),
∴AD=CD.
又∵∠ADE=∠CDF ,
∴△ADE≌△CDF(ASA).
(2)①∵當(dāng)四邊形ACFE是菱形時(shí),
∴AE=AC=CF=EF.
由題意可知:AE=,CF=,
∴,即.
②若EF⊥AG,四邊形ACFE是直角梯形,
過(guò)C作CM⊥AG于點(diǎn)M,
∵AM=3,AE=,ME=CF=,
∴AE-ME=AM,,即,
此時(shí),G與F重合,不符合題意,舍去.
若AF⊥BV,四邊形若四邊形AFCE是直角梯形,
∵△ABC是等邊三角形,F是BC中點(diǎn),
∴,解得.
經(jīng)檢驗(yàn),符合題意.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)(為常數(shù)),下列說(shuō)法正確的是( ).
A. 對(duì)任意實(shí)數(shù),函數(shù)與軸都沒(méi)有交點(diǎn)
B. 存在實(shí)數(shù),滿足當(dāng)時(shí),函數(shù)的值都隨的增大而減小
C. 取不同的值時(shí),二次函數(shù)的頂點(diǎn)始終在同一條直線上
D. 對(duì)任意實(shí)數(shù),拋物線都必定經(jīng)過(guò)唯一定點(diǎn)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在□ABCD 中,對(duì)角線 AC 與 BD 相交于點(diǎn) O ,點(diǎn) E , F 分別為 OB , OD 的中點(diǎn),延長(zhǎng) AE 至 G ,使 EG =AE ,連接 CG .
(1)求證: △ABE≌△CDF ;
(2)當(dāng) AB 與 AC 滿足什么數(shù)量關(guān)系時(shí),四邊形 EGCF 是矩形?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=1.將三角板中30°角的頂點(diǎn)D放在AB邊上移動(dòng),使這個(gè)30°角的兩邊分別與△ABC的邊AC,BC相交于點(diǎn)E,F,且使DE始終與AB垂直.
(1)△BDF是什么三角形?請(qǐng)說(shuō)明理由;
(2)設(shè)AD=x,CF=y,試求y與x之間的函數(shù)關(guān)系式;(不用寫出自變量x的取值范圍)
(3)當(dāng)移動(dòng)點(diǎn)D使EF∥AB時(shí),求AD的長(zhǎng)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知反比例函數(shù)y= (m為常數(shù),且m≠5).
(1)若在其圖象的每個(gè)分支上,y隨x的增大而增大,求m的取值范圍;
(2)若其圖象與一次函數(shù)y=-x+1的圖象的一個(gè)交點(diǎn)的縱坐標(biāo)是3,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知CD是△ABC中AB邊上的高,以CD為直徑的⊙O分別交CA, CB于點(diǎn)E,F(xiàn),點(diǎn)G是AD的中點(diǎn).求證:GE是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在四邊形ABCD中,∠BAD=90°,AD=3cm,AB=4 cm,BC=5 cm, CD=6 cm.
(1)連結(jié)BD,判斷△CBD的形狀;
(2)求四邊形ABCD的面積S.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)B、C、D都在⊙O上,過(guò)C點(diǎn)作CA∥BD交OD的延長(zhǎng)線于點(diǎn)A,連接BC,∠B=∠A=30°,BD=4.
(1)求證:AC是⊙O的切線;
(2)求由線段AC、AD與弧CD所圍成的陰影部分的面積.(結(jié)果保留π)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,分別延長(zhǎng)OA,OC到點(diǎn)E,F,使AE=CF,依次連接B,F,D,E各點(diǎn).
(1)求證:△BAE≌△BCF;
(2)若∠ABC=40°,則當(dāng)∠EBA= 時(shí),四邊形BFDE是正方形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com