【題目】深圳市某校藝術(shù)節(jié)期間,開展了好聲音歌唱比賽,在初賽中,學(xué)生處對(duì)初賽成績做了統(tǒng)計(jì)分析,繪制成如下頻數(shù)、頻率分布表和頻數(shù)分布直方圖(如圖),請(qǐng)你根據(jù)圖中提供的信息,解答下列問題:

分組

頻數(shù)

頻率

74.5≤x<79.5

2

0.04

79.5≤x<84.5

a

0.16

84.5≤x<89.5

20

0.40

89.5≤x<94.5

16

0.32

94.5≤x<100.5

4

b

合計(jì)

50

1

(1)頻數(shù)、頻率分布表中a=   ,b=   ;

(2)補(bǔ)全頻數(shù)分布直方圖;

(3)初賽成績?cè)?/span>94.5≤x<100.5分的四位同學(xué)恰好是七年級(jí)、八年級(jí)各一位,九年級(jí)兩位,學(xué)生處打算從中隨機(jī)挑選兩位同學(xué)談一下決賽前的訓(xùn)練,則所選兩位同學(xué)恰好都是九年級(jí)學(xué)生的概率為   

【答案】(1)8,0.08(2)見解析(3)

【解析】

(1)由74.5≤x<79.5組數(shù)據(jù)可求出被調(diào)查的總?cè)藬?shù)進(jìn)而求出ab即可.

(2)根據(jù)頻數(shù)、頻率分布表結(jié)合(1)即可畫出.

(3)用畫樹狀圖的方法即可得解.

(1)∵被調(diào)查的總?cè)藬?shù)為2÷0.04=50,

a=50×0.16=8、b=4÷50=0.08,

故答案為:8、0.08;

(2)如圖所示:

(3)畫樹狀圖如下:

由樹狀圖可知共有12種等可能結(jié)果,其中所選兩位同學(xué)恰好都是九年級(jí)學(xué)生有2種結(jié)果,

∴所選兩位同學(xué)恰好都是九年級(jí)學(xué)生的概率為

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(﹣2,3)、B(﹣6,0)、C(﹣1,0).

1)將△ABC沿y軸翻折,則翻折后點(diǎn)A的對(duì)應(yīng)點(diǎn)的坐標(biāo)是

2)作出ABC關(guān)于x軸對(duì)稱的圖形A1B1C1,畫A1B1C1,并直接寫出點(diǎn)A1的坐標(biāo).

3)若△DBC△ABC全等,請(qǐng)畫出所有符合條件的△DBC(點(diǎn)D與點(diǎn)A重合除外),并直接寫出點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩車從A城出發(fā)沿相同的路線勻速行駛至B城.在整個(gè)行駛過程中,甲、乙兩車離開A城的距離y(千米)與甲車行駛的時(shí)間t(小時(shí))之間的函數(shù)關(guān)系如圖所示,則下列結(jié)論:①A、B兩城相距300千米;②乙車比甲車晚出發(fā)1小時(shí),卻早到1小時(shí);③乙車出發(fā)后2.5小時(shí)追上甲車;④當(dāng)甲、乙兩車相距50千米時(shí),t.其中正確的是________(填序號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一個(gè)面積為1的正方形,經(jīng)過一次生長后,在它的左右肩上生出了2個(gè)小正方形(如圖①),其中,3個(gè)正方形圍成的三角形是直角三角形.再經(jīng)過一次生長后,又生出了4個(gè)小正方形(如圖②),如果按此規(guī)律繼續(xù)生長下去,它將變得枝繁葉茂,在生長2019次后形成的圖形中所有正方形的面積和是(  )

A.2018B.2019C.2020D.2021

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是( )

A.?dāng)S一枚均勻的骰子,骰子停止轉(zhuǎn)動(dòng)后,6點(diǎn)朝上是必然事件

B.甲、乙兩人在相同條件下各射擊10次,他們的成績平均數(shù)相同,方差分別是,,則甲的射擊成績較穩(wěn)定

C.明天降雨的概率為,表示明天有半天都在降雨

D.了解一批電視機(jī)的使用壽命,適合用普查的方式

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)Ay軸正半軸上,點(diǎn)B與點(diǎn)C都在x軸上,且點(diǎn)B在點(diǎn)C的左側(cè),滿足BC=OA,若-3am-1b2anb2n-2是同類項(xiàng)且OA=m,OB=n

1m= ;n=

2)點(diǎn)C的坐標(biāo)是

3)若坐標(biāo)平面內(nèi)存在一點(diǎn)D,滿足△BCD全等△ABO,試求點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一張三角形紙片ABC,其中BAC=60°,BC=6,點(diǎn)D是BC邊上一動(dòng)點(diǎn),將BD,CD翻折使得B′,C′分別落在AB,AC邊上,(B與B′,C與C′分別對(duì)應(yīng)),點(diǎn)D從點(diǎn)B運(yùn)動(dòng)至點(diǎn)C,△B′C′D面積的大小變化情況是( 。

A. 一直減小 B. 一直不變 C. 先減小后增大 D. 先增大后減小

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,AB=CD.

(1)如圖(1),求證:AD∥BC;

(2)如圖(2),點(diǎn)F是AC的中點(diǎn),弦DG∥AB,交BC于點(diǎn)E,交AC于點(diǎn)M,求證:AE=2DF;

(3)在(2)的條件下,若DG平分∠ADC,GE=5,tan∠ADF=4,求⊙O的半徑。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=-x2+2x+m的圖象與x軸的一個(gè)交點(diǎn)為A(3,0),另一個(gè)交點(diǎn)為B,且與y軸交于點(diǎn)C.若該二次函數(shù)圖象上有一點(diǎn)D(x,y),使SABD=SABC,則D點(diǎn)的坐標(biāo)為____________________

查看答案和解析>>

同步練習(xí)冊(cè)答案