【題目】如圖,∠AOB=30°,∠AOB內(nèi)有一定點(diǎn)P,且OP=10.在OA上有一點(diǎn)Q,OB上有一點(diǎn)R.若△PQR周長(zhǎng)最小,則最小周長(zhǎng)是( 。
A.10
B.15
C.20
D.30
【答案】A
【解析】解:設(shè)∠POA=θ,則∠POB=30°﹣θ,作PM⊥OA與OA相交于M,并將PM延長(zhǎng)一倍到E,即ME=PM.
作PN⊥OB與OB相交于N,并將PN延長(zhǎng)一倍到F,即NF=PN.
連接EF與OA相交于Q,與OB相交于R,再連接PQ,PR,則△PQR即為周長(zhǎng)最短的三角形.
∵OA是PE的垂直平分線,
∴EQ=QP;
同理,OB是PF的垂直平分線,
∴FR=RP,
∴△PQR的周長(zhǎng)=EF.
∵OE=OF=OP=10,且∠EOF=∠EOP+∠POF=2θ+2(30°﹣θ)=60°,
∴△EOF是正三角形,∴EF=10,
即在保持OP=10的條件下△PQR的最小周長(zhǎng)為10.
故選A.
先畫出圖形,作PM⊥OA與OA相交于M,并將PM延長(zhǎng)一倍到E,即ME=PM.作PN⊥OB與OB相交于N,并將PN延長(zhǎng)一倍到F,即NF=PN.連接EF與OA相交于Q,與OB相交于R,再連接PQ,PR,則△PQR即為周長(zhǎng)最短的三角形.再根據(jù)線段垂直平分線的性質(zhì)得出△PQR=EF,再根據(jù)三角形各角之間的關(guān)系判斷出△EOF的形狀即可求解.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=kx(k為常數(shù),k≠0)與雙曲線(m為常數(shù),m>0)的交點(diǎn)為A、B,AC⊥x軸于點(diǎn)C,∠AOC=30°,OA=2.
(1)求m的值;
(2)點(diǎn)P在y軸上,如果,求P點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將x2+4x﹣5=0進(jìn)行配方變形,下列正確的是( )
A.(x+2)2=9
B.(x﹣2)2=9
C.(x+2)2=1
D.(x﹣2)2=1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系,O為坐標(biāo)原點(diǎn),點(diǎn)A(﹣1,0),點(diǎn)B(0,).
(1)求∠BAO的度數(shù);
(2)如圖1,將△AOB繞點(diǎn)O順時(shí)針得△A′OB′,當(dāng)A′恰好落在AB邊上時(shí),設(shè)△AB′O的面積為S1,△BA′O的面積為S2,S1與S2有何關(guān)系?為什么?
(3)若將△AOB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)到如圖2所示的位置,S1與S2的關(guān)系發(fā)生變化了嗎?證明你的判斷.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】三角形的第一邊長(zhǎng)為3a+2b,第二邊比第一邊長(zhǎng)a﹣b,第三邊比第二邊短2a.請(qǐng)用a、b式子分別表示第二邊和第三邊,并求這個(gè)三角形的周長(zhǎng)(最后結(jié)果都要求最簡(jiǎn))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在數(shù)軸上到原點(diǎn)的距離小于4的整數(shù)可以為________.(任意寫出一個(gè)即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列某種幾何體從正面、左面、上面看到的形狀圖都相同,則這個(gè)幾何體是______(填寫序號(hào))①三棱錐;②圓柱;③球.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】請(qǐng)你寫出一個(gè)只含有字母m、n,且它的系數(shù)為﹣2、次數(shù)為3的單項(xiàng)式 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】天義地區(qū)某天的最高氣溫是8℃,最低氣溫是﹣2℃,則該地這一天的溫差是( )
A.10℃
B.﹣6℃
C.6℃
D.﹣10℃
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com