【題目】如圖,,,點(diǎn)在軸上,且.
(1)求點(diǎn)的坐標(biāo),并畫出;
(2)求的面積;
(3)在軸上是否存在點(diǎn),使以三點(diǎn)為頂點(diǎn)的三角形的面積為10?若存在,請直接寫出點(diǎn)的坐標(biāo);若不存在,請說明理由.
【答案】(1)點(diǎn)的坐標(biāo)為,,畫圖見解析;(2) 6;(3)點(diǎn)的坐標(biāo)為或
【解析】
(1)分點(diǎn)B在點(diǎn)A的左邊和右邊兩種情況解答;
(2)利用三角形的面積公式列式計(jì)算即可得解;
(3)利用三角形的面積公式列式求出點(diǎn)P到x軸的距離,然后分兩種情況寫出點(diǎn)P的坐標(biāo)即可.
(1)點(diǎn)B在點(diǎn)A的右邊時(shí),-1+3=2,
點(diǎn)B在點(diǎn)A的左邊時(shí),-1-3=-4,
所以,B的坐標(biāo)為(2,0)或(-4,0),
如圖所示:
(2)△ABC的面積=×3×4=6;
(3)設(shè)點(diǎn)P到x軸的距離為h,
則×3h=10,
解得h=,
點(diǎn)P在y軸正半軸時(shí),P(0,),
點(diǎn)P在y軸負(fù)半軸時(shí),P(0,-),
綜上所述,點(diǎn)P的坐標(biāo)為(0,)或(0,-).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰△ABC中,AC=BC,D,E分別為AB,BC上一點(diǎn),∠CDE=∠A.
(1)如圖1,若BC=BD,∠ACB=90°,則∠DEC度數(shù)為_________°;
(2)如圖2,若BC=BD,求證:CD=DE;
(3)如圖3,過點(diǎn)C作CH⊥DE,垂足為H,若CD=BD,EH=1,求DE-BE的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,已知直線y=-2x+4與x軸、y軸分別交于點(diǎn)A、C,以O(shè)A、OC為邊在第一象限內(nèi)作長方形OABC.
(1)求點(diǎn)A、C的坐標(biāo);
(2)將△ABC對折,使得點(diǎn)A的與點(diǎn)C重合,折痕交AB于點(diǎn)D,求直線CD的解析式(圖②);
(3)在坐標(biāo)平面內(nèi),是否存在點(diǎn)P(除點(diǎn)B外),使得△APC與△ABC全等?若存在,請直接寫出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,長方形紙片ABCD中,AB=4,BC=6,點(diǎn)E在AB邊上,將紙片沿CE折疊,點(diǎn)B落在點(diǎn)F處,EF,CF分別交AD于點(diǎn)G,H,且EG=GH,則AE的長為( )
A. B. 1C. D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖,正方形ABCD中,點(diǎn)E,F分別在邊BC,CD上,∠EAF=45°,延長CD到點(diǎn)G,使DG=BE,連結(jié)EF,AG.求證:EF=FG.
(2)如圖,等腰直角三角形ABC中,∠BAC=90°,AB=AC,點(diǎn)M,N在邊BC上,且∠MAN=45°,若BM=1,CN=3,求MN的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)已知⊙O的直徑為10cm,點(diǎn)A為⊙O外一定點(diǎn),OA=12cm,點(diǎn)P為⊙O上一動點(diǎn),求PA的最大值和最小值.
(2)如圖:=,D、E分別是半徑OA和OB的中點(diǎn).求證:CD=CE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】[問題情境]
已知矩形的面積為一定值1,當(dāng)該矩形的一組鄰邊分別為多少時(shí),它的周長最?最小值是多少?
[數(shù)學(xué)模型]
設(shè)該矩形的一邊長為x,周長為L,則L與x的函數(shù)表達(dá)式為 .
[探索研究]
小彬借鑒以前研究函數(shù)的經(jīng)驗(yàn),先探索函數(shù)的圖象性質(zhì).
(1)結(jié)合問題情境,函數(shù)的自變量x的取值范圍是 ,
如表是y與x的幾組對應(yīng)值.
x | … | 1 | 2 | 3 | m | … | |||
y | … | 4 | 3 | 2 | 2 | 2 | 3 | 4 | … |
①直接寫出m的值;
②畫出該函數(shù)圖象,結(jié)合圖象,得出當(dāng)x= 時(shí),y有最小值,y的最小值為 .
[解決問題]
(2)直接寫出“問題情境”中問題的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)矩形ABCD的較短邊長為2.
(1)如圖①,若沿長邊對折后得到的矩形與原矩形相似,求它的另一邊長;
(2)如圖②,已知矩形ABCD的另一邊長為4,剪去一個(gè)矩形ABEF后,余下的矩形EFDC與原矩形相似,求余下矩形EFDC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(問題情境)
如圖,在正方形ABCD中,點(diǎn)E是線段BG上的動點(diǎn),AE⊥EF,EF交正方形外角∠DCG的平分線CF于點(diǎn)F.
(探究展示)
(1)如圖1,若點(diǎn)E是BC的中點(diǎn),證明:∠BAE+∠EFC=∠DCF.
(2)如圖2,若點(diǎn)E是BC的上的任意一點(diǎn)(B、C除外),∠BAE+∠EFC=∠DCF是否仍然成立?若成立,請予以證明;若不成立,請說明理由.
(拓展延伸)
(3)如圖3,若點(diǎn)E是BC延長線(C除外)上的任意一點(diǎn),求證:AE=EF.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com