若當x=3,4時,代數(shù)式ax+b的值分別為7,9,求當x=1時,代數(shù)式ax+b的值.
依題意,得
3a+b=7
4a+b=9

解,得
a=2
b=1

當x=1時,ax+b=2×1+1=3.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀材料:當拋物線的解析式中含有字母系數(shù)時,隨著系數(shù)中字母取值的不同,拋物線的頂點坐標也將發(fā)生變化.例如:由拋物線y=x2-2mx+m2+2m-1…(1)
得:y=(x-m)2+2m-1…(2)
∴拋物線的頂點坐標為(m,2m-1),設頂點為P(x0,y0),則:
x0=m        …(3)
y0=2m-1  …(4)

當m的值變化時,頂點橫、縱坐標x0,y0的值也隨之變化,將(3)代入(4)
得:y0=2x0-1.…(5)
可見,不論m取任何實數(shù)時,拋物線的頂點坐標都滿足y=2x-1.
解答問題:
①在上述過程中,由(1)到(2)所用的數(shù)學方法是
 
,其中運用的公式是
 
.由(3)、(4)得到(5)所用的數(shù)學方法是
 

②根據閱讀材料提供的方法,確定拋物線y=x2-2mx+2m2-4m+3的頂點縱坐標y與橫坐標x之間的函數(shù)關系式.
③是否存在實數(shù)m,使拋物線y=x2-2mx+2m2-4m+3與x軸兩交點A(x1,0)、B(x2,0)之間的距離為AB=4,若存在,求出m的值;若不存在,說明理由(提示:|x1-x2|2=(x1+x22-4x1x2).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

解二元一次方程組的基本思路是
消元
消元
,即變“
二元
二元
”為“
一元
一元
”,其方法有兩種是
代人消元法
代人消元法
加減消元法
加減消元法
.當方程組中某個方程的系數(shù)比較簡單(最好系數(shù)為1)時用
代人消元法
代人消元法
為宜;當兩個方程的某一個未知數(shù)的系數(shù)的絕對值相等時,用
加減消元法
加減消元法
為宜;若不具備上述條件,可以通過適當變形,用
加減消元法
加減消元法
求解.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

當拋物線的解析式中含有字母系數(shù)時,隨著系數(shù)中字母取值的不同,拋物線的頂點坐標也將發(fā)生變化.例如:由拋物線y=x2-2mx+m2+2m-1…(1)
得:y=(x-m)2+2m-1…(2)
∴拋物線的頂點坐標為(m,2m-1),設頂點為P(x0,y0),則:數(shù)學公式
當m的值變化時,頂點橫、縱坐標x0,y0的值也隨之變化,將(3)代入(4)
得:y0=2x0-1.…(5)
可見,不論m取任何實數(shù)時,拋物線的頂點坐標都滿足y=2x-1.
解答問題:
①在上述過程中,由(1)到(2)所用的數(shù)學方法是______,其中運用的公式是______.由(3)、(4)得到(5)所用的數(shù)學方法是______.
②根據閱讀材料提供的方法,確定拋物線y=x2-2mx+2m2-4m+3的頂點縱坐標y與橫坐標x之間的函數(shù)關系式.
③是否存在實數(shù)m,使拋物線y=x2-2mx+2m2-4m+3與x軸兩交點A(x1,0)、B(x2,0)之間的距離為AB=4,若存在,求出m的值;若不存在,說明理由(提示:|x1-x2|2=(x1+x22-4x1x2).

查看答案和解析>>

科目:初中數(shù)學 來源:淮北模擬 題型:解答題

閱讀材料:當拋物線的解析式中含有字母系數(shù)時,隨著系數(shù)中字母取值的不同,拋物線的頂點坐標也將發(fā)生變化.例如:由拋物線y=x2-2mx+m2+2m-1…(1)
得:y=(x-m)2+2m-1…(2)
∴拋物線的頂點坐標為(m,2m-1),設頂點為P(x0,y0),則:
x0=m        …(3)
y0=2m-1  …(4)

當m的值變化時,頂點橫、縱坐標x0,y0的值也隨之變化,將(3)代入(4)
得:y0=2x0-1.…(5)
可見,不論m取任何實數(shù)時,拋物線的頂點坐標都滿足y=2x-1.
解答問題:
①在上述過程中,由(1)到(2)所用的數(shù)學方法是______,其中運用的公式是______.由(3)、(4)得到(5)所用的數(shù)學方法是______.
②根據閱讀材料提供的方法,確定拋物線y=x2-2mx+2m2-4m+3的頂點縱坐標y與橫坐標x之間的函數(shù)關系式.
③是否存在實數(shù)m,使拋物線y=x2-2mx+2m2-4m+3與x軸兩交點A(x1,0)、B(x2,0)之間的距離為AB=4,若存在,求出m的值;若不存在,說明理由(提示:|x1-x2|2=(x1+x22-4x1x2).

查看答案和解析>>

科目:初中數(shù)學 來源:2010-2011學年安徽省淮北市五校第五次聯(lián)考九年級數(shù)學試卷(解析版) 題型:解答題

閱讀材料:當拋物線的解析式中含有字母系數(shù)時,隨著系數(shù)中字母取值的不同,拋物線的頂點坐標也將發(fā)生變化.例如:由拋物線y=x2-2mx+m2+2m-1…(1)
得:y=(x-m)2+2m-1…(2)
∴拋物線的頂點坐標為(m,2m-1),設頂點為P(x,y),則:
當m的值變化時,頂點橫、縱坐標x,y的值也隨之變化,將(3)代入(4)
得:y=2x-1.…(5)
可見,不論m取任何實數(shù)時,拋物線的頂點坐標都滿足y=2x-1.
解答問題:
①在上述過程中,由(1)到(2)所用的數(shù)學方法是______,其中運用的公式是______.由(3)、(4)得到(5)所用的數(shù)學方法是______.
②根據閱讀材料提供的方法,確定拋物線y=x2-2mx+2m2-4m+3的頂點縱坐標y與橫坐標x之間的函數(shù)關系式.
③是否存在實數(shù)m,使拋物線y=x2-2mx+2m2-4m+3與x軸兩交點A(x1,0)、B(x2,0)之間的距離為AB=4,若存在,求出m的值;若不存在,說明理由(提示:|x1-x2|2=(x1+x22-4x1x2).

查看答案和解析>>

同步練習冊答案