如圖,在▱ABCD中,對角線AC、BD相交成的銳角為α,若AC=a,BD=b,則▱ABCD的面積是( 。
A. absinα B.a(chǎn)bsinα C.a(chǎn)bcosα D. abcosα
A【考點(diǎn)】平行四邊形的性質(zhì);解直角三角形.
【專題】計(jì)算題.
【分析】過點(diǎn)C作CE⊥DO于點(diǎn)E,進(jìn)而得出EC的長,再利用三角形面積公式求出即可.
【解答】解:過點(diǎn)C作CE⊥DO于點(diǎn)E,
∵在▱ABCD中,對角線AC、BD相交成的銳角為α,AC=a,BD=b,
∴sinα=,
∴EC=COsinα=asinα,
∴S△BCD=CE×BD=×asinα×b=absinα,
∴▱ABCD的面積是: absinα×2=absinα.
故選:A.
【點(diǎn)評】此題主要考查了平行四邊形的性質(zhì)以及解直角三角形,得出EC的長是解題關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
下列四個(gè)命題中,假命題是( 。
A.兩角對應(yīng)相等,兩個(gè)三角形相似
B.三邊對應(yīng)成比例,兩個(gè)三角形相似
C.兩邊對應(yīng)成比例且其中一邊的對角相等,兩個(gè)三角形相似
D.兩邊對應(yīng)成比例且夾角相等,兩個(gè)三角形相似
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,將平行四邊形ABCD折疊,使頂點(diǎn)D恰落在AB邊上的點(diǎn)M處,折痕為AN,那么對于結(jié)論 ①M(fèi)N∥BC,②MN=AM,下列說法正確的是( 。
A.①②都對 B.①②都錯(cuò) C.①對②錯(cuò) D.①錯(cuò)②對
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
某旅游區(qū)有一個(gè)景觀奇異的望天洞,D點(diǎn)是洞的入口,游人從入口進(jìn)洞游覽后,可經(jīng)山洞到達(dá)山頂?shù)某隹跊鐾處觀看旅游區(qū)風(fēng)景,最后坐纜車沿索道AB返回山腳下的B處.在同一平面內(nèi),若測得斜坡BD的長為100米,坡角∠DBC=10°,在B處測得A的仰角∠ABC=40°,在D處測得A的仰角∠ADF=85°,過D點(diǎn)作地面BE的垂線,垂足為C.
(1)求∠ADB的度數(shù);
(2)求索道AB的長.(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,已知△ABC是等腰直角三角形,CD是斜邊AB的中線,△ADC繞點(diǎn)D旋轉(zhuǎn)一定角度得到△A'DC',A'D交AC于點(diǎn)E,DC'交BC于點(diǎn)F,連接EF,若,則= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,已知在Rt△ABC中,∠ABC=90°,點(diǎn)D是BC邊的中點(diǎn),分別以B、C為圓心,大于線段BC長度一半的長為半徑圓弧,兩弧在直線BC上方的交點(diǎn)為P,直線PD交AC于點(diǎn)E,連接BE,則下列結(jié)論:①ED⊥BC;②∠A=∠EBA;③EB平分∠AED;④ED=AB中,一定正確的是( 。
A.①②③ B.①②④ C.①③④ D.②③④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com