【題目】小明和小亮進(jìn)行百米賽跑,小明比小亮跑得快,如果兩人同時(shí)起跑,小明肯定贏,現(xiàn)在小明讓小亮先跑若干米,兩人的路程(米)分別與小明追趕時(shí)間(秒)的函數(shù)關(guān)系如圖所示。
⑴小明讓小亮先跑了多少米?
⑵分別求出表示小明、小亮的路程與時(shí)間的函數(shù)關(guān)系式。
⑶誰將贏得這場(chǎng)比賽?請(qǐng)說明理由。
【答案】⑴小明讓小亮先跑10米;⑵小明:;小亮:;⑶小亮贏得這場(chǎng)比賽.
【解析】
(1)由圖象可知:看兩條直線的縱坐標(biāo)可以看出相差10米,所以小明讓小亮先跑10米;
(2)因?yàn)樾∶骱笈,小亮先跑,所以?dāng)x=0時(shí),小明跑的路程為0,故l2表示小明的路程與時(shí)間的關(guān)系;
(3)觀察圖象可知,當(dāng)S=100米時(shí),小明的時(shí)間小于小亮的時(shí)間,所以小明將贏得這場(chǎng)比賽.
解:⑴由圖象可得:小明讓小亮先跑10米
⑵小明:經(jīng)過,,.
小亮:經(jīng)過,,
⑶小明百米賽跑:秒;小亮百米賽跑:秒,小亮贏得這場(chǎng)比賽.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解全區(qū)3000名九年級(jí)學(xué)生英語聽力口語自動(dòng)化考試成績(jī)的情況,隨機(jī)抽取了部分學(xué)生的成績(jī)(滿分30分且得分均為整數(shù)),制成下表:
分?jǐn)?shù)段(x分分) | 0≤x≤18 | 19≤x≤21 | 22≤x≤24 | 25≤x≤27 | 28≤x≤30 |
人數(shù) | 10 | 15 | 35 | 112 | 128 |
(1)填空:
①本次抽樣調(diào)查共抽取了 名學(xué)生;
②學(xué)生成績(jī)的中位數(shù)所在的分?jǐn)?shù)段是 ;
③若用扇形統(tǒng)計(jì)圖表示統(tǒng)計(jì)結(jié)果,則分?jǐn)?shù)段為0≤x≤18的人數(shù)所對(duì)應(yīng)扇形的圓心角為 °;
(2)如果將25分以上(含25分)定為優(yōu)秀,請(qǐng)估計(jì)全區(qū)九年級(jí)考生成績(jī)?yōu)閮?yōu)秀的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,對(duì)角線AC與BD交于點(diǎn)O.過點(diǎn)C作BD的平行線,過點(diǎn)D作AC的平行線,兩直線相交于點(diǎn)E.
(1)求證:四邊形OCED是矩形;
(2)若CE=1,DE=2,ABCD的面積是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,△BPC是等邊三角形,BP、CP的延長(zhǎng)線分別交AD于點(diǎn)E、F,連接BD、DP,BD與CF相交于點(diǎn)H,給出下列結(jié)論:①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PHPC
其中正確的是( 。
A. ①②③④ B. ②③ C. ①②④ D. ①③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)某學(xué)校“智慧方園”數(shù)學(xué)社團(tuán)遇到這樣一個(gè)題目:
如圖1,在△ABC中,點(diǎn)O在線段BC上,∠BAO=30°,∠OAC=75°,AO=,BO:CO=1:3,求AB的長(zhǎng).
經(jīng)過社團(tuán)成員討論發(fā)現(xiàn),過點(diǎn)B作BD∥AC,交AO的延長(zhǎng)線于點(diǎn)D,通過構(gòu)造△ABD就可以解決問題(如圖2).
請(qǐng)回答:∠ADB= °,AB= .
(2)請(qǐng)參考以上解決思路,解決問題:
如圖3,在四邊形ABCD中,對(duì)角線AC與BD相交于點(diǎn)O,AC⊥AD,AO=,∠ABC=∠ACB=75°,BO:OD=1:3,求DC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四位同學(xué)在研究函數(shù)(a,b,c是常數(shù))時(shí),甲發(fā)現(xiàn)當(dāng)x=-1時(shí)函數(shù)的最小值為-1;乙發(fā)現(xiàn)4a-2b+c=0成立;丙發(fā)現(xiàn)當(dāng)x<1時(shí),函數(shù)值y隨x的增大而增大;丁發(fā)現(xiàn)當(dāng)x=5時(shí),y=-4.已知這四位同學(xué)中只有一位發(fā)現(xiàn)的結(jié)論是錯(cuò)誤的,則該同學(xué)是( )
A. 甲B. 乙C. 丙D. 丁
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系內(nèi),二次函數(shù)與一次函數(shù)(a,b為常數(shù),且).
(1)若y1,y2的圖象都經(jīng)過點(diǎn)(2,3),求y1,y2的表達(dá)式;
(2)當(dāng)y2經(jīng)過點(diǎn)時(shí),y1也過A,B兩點(diǎn):
①求m的值;
②分別在y1,y2的圖象上,實(shí)數(shù)t使得“當(dāng)或時(shí),”,試求t的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB∥CD,直線MN與AB、CD分別交于點(diǎn)E、F,FG平分∠EFD,EG⊥FG于點(diǎn)G,若∠CFN=110°,則∠BEG=( )
A. 20°B. 25°C. 35°D. 40°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在四邊形ABCD中,AD∥BC,AD=2BC,點(diǎn)E為AD的中點(diǎn),連接BE、BD,∠ABD=90°.
(1)如圖l,求證:四邊形BCDE為菱形;
(2)如圖2,連接AC交BD于點(diǎn)F,連接EF,若AC平分∠BAD,在不添加任何輔助線的情況下,請(qǐng)直接寫出圖2中四個(gè)三角形,使寫出的每個(gè)三角形的面積都等于△ABC面積的.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com