若將函數(shù)的圖像向右平行移動(dòng)1個(gè)單位,則它與直線的交點(diǎn)坐標(biāo)是( )
A、(-3,0)和(5,0) B、(-2,)和(6,)
C、(-2,0)和(6,0) D、(-3,)和(5,)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
已知一個(gè)樣本,共100個(gè)數(shù)據(jù),在頻數(shù)分布直方圖中各小長方形的高之比為1∶3∶4∶2,則下列說法錯(cuò)誤的是( ).
A.頻數(shù)最小的一組數(shù)據(jù)的個(gè)數(shù)是10
B.?dāng)?shù)據(jù)最多的一組的頻率是4
C.最后一組的數(shù)據(jù)個(gè)數(shù)為20
D.第一組的頻率是0.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
閱讀材料:
對于平面內(nèi)的任意兩點(diǎn)A(x1,y1),B(x2,y2),
由勾股定理易知A、B兩點(diǎn)間的距離公式為:
AB=.
如:已知,,
則
解答下列問題:
已知點(diǎn)E(6,10),F(xiàn)(0,2),C(0,1)。
(1)直接應(yīng)用平面內(nèi)兩點(diǎn)間距離公式計(jì)算,
E、F之間的距離為_ _5及代數(shù)式的最小值為 ;
(2)求以C為頂點(diǎn),且經(jīng)過點(diǎn)E的拋物線的解析式;
(3)①若點(diǎn)D是上述拋物線上的點(diǎn),且其橫坐標(biāo)為 -3,試求DF的長;
②若點(diǎn)P是該拋物線上的任意一點(diǎn),試探究線段FP的長度與點(diǎn)P縱坐標(biāo)的數(shù)量關(guān)系,并證明你的猜想。
③我們知道“圓可以看成是所有到定點(diǎn)的距離等于定長的點(diǎn)的集合”。類似地,拋物線可以看成是_______________________________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
將函數(shù)y=2x2的圖象向右平行移動(dòng)1個(gè)單位,再向上平移5個(gè)單位,可得到的拋物線是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,菱形ABCD中,AB=2,∠C=60°,菱形ABCD在直線上向右作無滑動(dòng)的翻滾,每繞著一個(gè)頂點(diǎn)旋轉(zhuǎn)60°叫一次操作,則經(jīng)過36次這樣的操作,菱形中心O所經(jīng)過的路徑總長為(結(jié)果保留π) .
|
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
小明投資銷售一種進(jìn)價(jià)為每件20元的護(hù)眼臺(tái)燈.銷售過程中發(fā)現(xiàn),每月銷售量y(件)與銷售單價(jià)x(元)之間的關(guān)系可近似的看作一次函數(shù):,在銷售過程中銷售單價(jià)不低于成本價(jià),而每件的利潤不高于成本價(jià)的60%.
(1)設(shè)小明每月獲得利潤為w(元),求每月獲得利潤w(元)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式,并確定自變量x的取值范圍.
(2)當(dāng)銷售單價(jià)定為多少元時(shí),每月可獲得最大利潤?每月的最大利潤是多少?
(3)如果小明想要每月獲得的利潤不低于2000元,那么小明每月的成本最少需要多少元?
(成本=進(jìn)價(jià)×銷售量)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,已知∠B=45°,AB=2cm,點(diǎn)P為∠ABC的邊BC上一動(dòng)點(diǎn),則當(dāng)
BP= cm時(shí),△BAP為直角三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
若點(diǎn)A(-3,y1),B(2,y2),C(3,y3)是函數(shù)圖像上的點(diǎn),則( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com