【題目】某中學(xué)學(xué)生會(huì)為了解該校學(xué)生喜歡球類(lèi)活動(dòng)的情況,隨機(jī)抽取了若干名學(xué)生進(jìn)行問(wèn)卷調(diào)查(要求每位學(xué)生只能填寫(xiě)一種自己喜歡的球類(lèi)),并將調(diào)查的結(jié)果繪制成如圖所示的兩幅不完整的統(tǒng)計(jì)圖.(把圓分成面積相等的兩部分)請(qǐng)根據(jù)圖中提供的信息,解答下列問(wèn)題:
(1)參加調(diào)查的人數(shù)共有_______人;在扇形圖中,表示“其它球類(lèi)”的扇形的圓心角為______度;
(2)將條形圖補(bǔ)充完整;
(3)若該校有名學(xué)生,估計(jì)喜歡“乒乓球”的學(xué)生共有多少人?
【答案】(1):;(2)補(bǔ)圖見(jiàn)解析;(3)人.
【解析】
(1)由乒乓球的人數(shù)及其所占百分比可得總?cè)藬?shù);用360°乘以“其他球類(lèi)”人數(shù)所占比例即可得
(2)用總?cè)藬?shù)減去另外三種項(xiàng)目的人數(shù)求得足球的人數(shù)即可補(bǔ)全條形圖;
(1)參加調(diào)查的總?cè)藬?shù)為60÷20%=300(人),
在扇形圖中表示“其它球類(lèi)”的扇形的圓心角的度數(shù)為360°×=36°.
故答案為300;
(2)足球的人數(shù)為300﹣(120+60+30)=90(人),
補(bǔ)全圖形如下:
(3)在參加調(diào)查的學(xué)生中,喜歡“乒乓球”的有60人,占20%,所以該校2000名學(xué)生中,估計(jì)喜歡“乒乓球”的學(xué)生共有2000×20%=400(人)。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,已知在△ABC中,AB=AC,D為線段BC上一點(diǎn),E為線段AC上一點(diǎn),且AD=AE.
(1)若∠ABC=60°,∠ADE=70°,求∠BAD與∠CDE的度數(shù);
(2)設(shè)∠BAD=α,∠CDE=β,試寫(xiě)出α、β之間的關(guān)系并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)銷(xiāo)售一批名牌襯衫,平均每天可售出件,每件盈利元,為擴(kuò)大銷(xiāo)售增加盈利,盡快減少庫(kù)存,商場(chǎng)決定采取適當(dāng)?shù)慕祪r(jià)措施,經(jīng)調(diào)查發(fā)現(xiàn),如果每件襯衫每降價(jià)一元,市場(chǎng)每天可多售件,問(wèn)他降價(jià)多少元時(shí),才能使每天所賺的利潤(rùn)最大?并求出最大利潤(rùn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)有一個(gè)長(zhǎng)、寬、高分別為5dm、4dm、3dm的無(wú)蓋長(zhǎng)方體木箱(如圖,AB=5dm,BC=4dm,AE=3dm).
(1) 求線段BG的長(zhǎng);
(2) 現(xiàn)在箱外的點(diǎn)A處有一只蜘蛛,箱內(nèi)的點(diǎn)C處有一只小蟲(chóng)正在午睡,保持不動(dòng).請(qǐng)你為蜘蛛設(shè)計(jì)一種捕蟲(chóng)方案,使得蜘蛛能以最短的路程捕捉到小蟲(chóng).(木板的厚度忽略不計(jì))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中有兩點(diǎn)A(4,0)、B(0,2),如果點(diǎn)C在x軸上(C與A不重合),當(dāng)點(diǎn)C的坐標(biāo)為或時(shí),使得由點(diǎn)B、O、C組成的三角形與△AOB相似(至少找出兩個(gè)滿足條件的點(diǎn)的坐標(biāo)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC和△BDE都是等邊三角形,且A,E,D三點(diǎn)在一直線上.請(qǐng)你說(shuō)明DA﹣DB=DC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,將三角形ABC向左平移至點(diǎn)B與原點(diǎn)重合,得三角形A′OC′.
(1)直接寫(xiě)出三角形ABC的三個(gè)頂點(diǎn)的坐標(biāo)A ,B ,C ;
(2)畫(huà)出三角形A′OC′;
(3)求三角形ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知⊙O的半徑為2,AB為直徑,CD為弦.AB與CD交于點(diǎn)M,將 沿CD翻折后,點(diǎn)A與圓心O重合,延長(zhǎng)OA至P,使AP=OA,連接PC
(1)求CD的長(zhǎng);
(2)求證:PC是⊙O的切線;
(3)點(diǎn)G為 的中點(diǎn),在PC延長(zhǎng)線上有一動(dòng)點(diǎn)Q,連接QG交AB于點(diǎn)E.交 于點(diǎn)F(F與B、C不重合).問(wèn)GEGF是否為定值?如果是,求出該定值;如果不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀理解:
在解形如3|x-2|=|x-2|+4這一類(lèi)含有絕對(duì)值的方程時(shí),我們可以根據(jù)絕對(duì)值的意義分x<2和x≥2兩種情況討論:
①當(dāng)x<2時(shí),原方程可化為-3(x-2)=-(x-2)+4,解得:x=0,符合x<2
②當(dāng)x≥2時(shí),原方程可化為3(x-2)=(x-2)+4,解得:x=4,符合x≥2
∴原方程的解為:x=0,x=4.
解題回顧:本題中2為x-2的零點(diǎn),它把數(shù)軸上的點(diǎn)所對(duì)應(yīng)的數(shù)分成了x<2和x≥2兩部分,所以分x<2和x≥2兩種情況討論.
知識(shí)遷移:
(1)運(yùn)用整體思想先求|x-3|的值,再去絕對(duì)值符號(hào)的方法解方程:|x-3|+8=3|x-3|;
知識(shí)應(yīng)用:
(2)運(yùn)用分類(lèi)討論先去絕對(duì)值符號(hào)的方法解類(lèi)似的方程:|2-x|-3|x+1|=x-9.
(提示:本題中有兩個(gè)零點(diǎn),它們把數(shù)軸上的點(diǎn)所對(duì)應(yīng)的數(shù)分成了幾部分呢?)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com