如圖,四邊形ABCD是菱形,對(duì)角線AC與BD交于點(diǎn)O,且AC=80,BD=60.動(dòng)點(diǎn)M、N分別以每秒1個(gè)單位的速度從點(diǎn)A、D同時(shí)出發(fā),分別沿A→O→D和D→A運(yùn)動(dòng),當(dāng)點(diǎn)N到達(dá)點(diǎn)A時(shí),M、N同時(shí)停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)求菱形ABCD的周長(zhǎng);
(2)記△DMN的面積為S,求S關(guān)于t的解析式,并求S的最大值;
(3)當(dāng)t=30秒時(shí),在線段OD的垂直平分線上是否存在點(diǎn)P,使得∠DPO=∠DON?若存在,這樣的點(diǎn)P有幾個(gè)?并求出點(diǎn)P到線段OD的距離;若不存在,請(qǐng)說明理由.
解:(1)在菱形ABCD中,
∵AC⊥BD,AC=80,BD=60,∴。
∴菱形ABCD的周長(zhǎng)為200。
(2)過點(diǎn)M作MP⊥AD,垂足為點(diǎn)P.
①當(dāng)0<t≤40時(shí),如答圖1,
∵,
∴MP=AM•sin∠OAD=t。
S=DN•MP=×t×t=t2。
②當(dāng)40<t≤50時(shí),如答圖2,MD=70﹣t,
∵,
∴MP=(70﹣t)。
∴S△DMN=DN•MP=×t×(70﹣t)=t2+28t=(t﹣35)2+490。
∴S關(guān)于t的解析式為。
當(dāng)0<t≤40時(shí),S隨t的增大而增大,當(dāng)t=40時(shí),最大值為480;
當(dāng)40<t≤50時(shí),S隨t的增大而減小,最大值不超過480。
綜上所述,S的最大值為480。
(3)存在2個(gè)點(diǎn)P,使得∠DPO=∠DON。
如答圖3所示,過點(diǎn)N作NF⊥OD于點(diǎn)F,
則NF=ND•sin∠ODA=30×=24,
DF=ND•cos∠ODA=30×=18。
∴OF=12!。
作∠NOD的平分線交NF于點(diǎn)G,過點(diǎn)G作GH⊥ON于點(diǎn)H,
則FG=GH。
∴S△ONF=OF•NF=S△OGF+S△OGN=OF•FG+ON•GH=(OF+ON)•FG。
∴。
∴。
設(shè)OD中垂線與OD的交點(diǎn)為K,由對(duì)稱性可知:∠DPK=∠DPO=∠DON=∠FOG,
∴。
∴PK=。
根據(jù)菱形的對(duì)稱性可知,在線段OD的下方存在與點(diǎn)P關(guān)于OD軸對(duì)稱的點(diǎn)P′。
∴存在兩個(gè)點(diǎn)P到OD的距離都是
【解析】
試題分析:(1)根據(jù)勾股定理及菱形的性質(zhì),求出菱形的周長(zhǎng)。
(2)在動(dòng)點(diǎn)M、N運(yùn)動(dòng)過程中:①當(dāng)0<t≤40時(shí),如答圖1所示,②當(dāng)40<t≤50時(shí),如答圖2所示.分別求出S的關(guān)系式,然后利用二次函數(shù)的性質(zhì)求出最大值。
(3)如答圖3所示,在Rt△PKD中,DK長(zhǎng)可求出,則只有求出tan∠DPK即可,為此,在△ODM中,作輔助線,構(gòu)造Rt△OND,作∠NOD平分線OG,則∠GOF=∠DPK。在Rt△OGF中,求出tan∠GOF的值,從而問題解決。
另解:答圖4所示,作ON的垂直平分線,交OD的垂直平分線EF于點(diǎn)I,連接結(jié)OI,IN,過點(diǎn)N作NG⊥OD,NH⊥EF,垂足分別為G,H。
當(dāng)t=30時(shí),DN=OD=30,易知△DNG∽△DAO,
∴,即。
∴NG=24,DG=18。
∵EF垂直平分OD,∴OE=ED=15,EG=NH=3。
設(shè)OI=R,EI=x,則
在Rt△OEI中,有R2=152+x2 ①
在Rt△NIH中,有R2=32+(24﹣x)2 ②
由①、②可得:。
∴PE=PI+IE=。
根據(jù)對(duì)稱性可得,在BD下方還存在一個(gè)點(diǎn)P′也滿足條件。
∴存在兩個(gè)點(diǎn)P,到OD的距離都是。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com