【題目】我們知道三角形任意兩條中線的交點(diǎn)是三角形的重心.重心有如下性質(zhì):重心到頂點(diǎn)的距離是重心到對(duì)邊中點(diǎn)距離的2倍.請(qǐng)利用該性質(zhì)解決問(wèn)題
(1)如圖1,在△ABC中,AF、BE是中線,AF⊥BE于P.若BP=2,∠FAB=30°,則EP= ,FP= ;
(2)如圖1,在△ABC中,BC=a,AC=b,AB=c,AF、BE是中線,AF⊥BE于P.猜想a2、b2、c2三者之間的關(guān)系并證明;
(3)如圖2,在ABCD中,點(diǎn)E、F、G分別是AD、BC、CD的中點(diǎn),BE⊥BG,AB=3,AD=2,求AF的長(zhǎng).
【答案】(1)1,;(2)a2+b2=5c2,理由見(jiàn)解析;(3)AF=4
【解析】
(1)由三角形的重心定理得出BP=2EP=2,AP=2FP,得出EP=1,由直角三角形的性質(zhì)得出AP=BP=2,即可得出FP=AP=;
(2)設(shè)PF=m,PE=n,由 ,得到AP=2m,PB=2n,再由勾股定理即可得出結(jié)論;
(3)連接AC、EC,由平行四邊形的性質(zhì)得出AD=BC,AD∥BC,證明四邊形AFCE是平行四邊形,得出AF=CE,由平行線得出△AEQ∽△CBQ,得出,設(shè)AQ=a,EQ=b,則CQ=2a,BQ=2b,證明EG是△ACD的中位線,由三角形中位線定理得出EG∥AC,得出BE⊥AC,由勾股定理得得出方程,求出a2=,得出BQ2=4b2=,b2=,在Rt△EQC中,由勾股定理求出CE,即可得出AF的長(zhǎng).
解:(1)∵在△ABC中,AF、BE是中線,
∴BP=2EP=2,AP=2FP,
∴EP=1,
∵AF⊥BE,∠FAB=30°,
∴AB=2BP=4,
∴AP=,
∴FP=AP=;
故答案為:1,;
(2)a2+b2=5c2;理由如下:
連接EF,如圖1所示:
∵AF,BE是△ABC的中線,
∴EF是△ABC的中位線,
∴EF∥AB,且EF=AB=c,
∴,
設(shè)PF=m,PE=n,
∴AP=2m,PB=2n,
在Rt△APB中,(2m)2+(2n)2=c2,即4m2+4n2=c2,
在Rt△APE中,(2m)2+n2=(b)2,即4m2+n2=b2,
在Rt△FPB中,m2+(2n)2=(a)2,即m2+4n2=a2,
∴5m2+5n2=(a2+b2)=c2,
∴a2+b2=5c2;
(3)連接AC、EC,如圖2所示:
∵四邊形ABCD是平行四邊形,
∴AD=BC,AD∥BC,
∵點(diǎn)E,F分別是AD,BC,CD的中點(diǎn),
∴AE=CE,
∴四邊形AFCE是平行四邊形,
∴AF=CE,
∵AD∥BC,
∴△AEQ∽△CBQ,
∴,
設(shè)AQ=a,EQ=b,則CQ=2a,BQ=2b,
∵點(diǎn)E,G分別是AD,CD的中點(diǎn),
∴EG是△ACD的中位線,
∴EG∥AC,
∵BE⊥EG,
∴BE⊥AC,
由勾股定理得:AB2﹣AQ2=BC2﹣CQ2,
即9﹣a2=(2)2﹣4a2,
∴3a2=11,
∴a2=,
∴BQ2=4b2=(2)2﹣4×=,
∴b2=×=,
在Rt△EQC中,CE2=EQ2+CQ2=b2+4a2=16,
∴CE=4,
∴AF=4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知平面直角坐標(biāo)系中有一點(diǎn).
(1)點(diǎn)M到y軸的距離為1時(shí),M的坐標(biāo)?
(2)點(diǎn)且MN//x軸時(shí),M的坐標(biāo)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一動(dòng)點(diǎn)從原點(diǎn)O出發(fā),按向上、向右、向下、向右的方向依次不斷地移動(dòng),每次移動(dòng)一個(gè)單位,得到點(diǎn)A1(0,1),A2(1,1),A3(1,0),A4(2,0),……,那么點(diǎn)A2019的坐標(biāo)為( )
A.(1008,1)B.(1009,1)C.(1009,0)D.(1010,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我市經(jīng)濟(jì)技術(shù)開(kāi)發(fā)區(qū)某智能手機(jī)有限公司接到生產(chǎn)300萬(wàn)部智能手機(jī)的訂單,為了盡快交貨,增開(kāi)了一條生產(chǎn)線,實(shí)際每月生產(chǎn)能力比原計(jì)劃提高了50%,結(jié)果比原計(jì)劃提前5個(gè)月完成交貨,求每月實(shí)際生產(chǎn)智能手機(jī)多少萬(wàn)部.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,ABCD的對(duì)角線AC、BD相交于點(diǎn)O,且∠OBC=∠OCB.
(1)求證:四邊形ABCD為矩形;
(2)過(guò)B作BE⊥AO于E,∠CBE=3∠ABE,BE=2,求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,∠B=55°,點(diǎn)D是斜邊AB的中點(diǎn),那么∠ACD的度數(shù)為( )
A.15°
B.25°
C.35°
D.45°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知鈍角△ABC,老師按照如下步驟尺規(guī)作圖:
步驟1:以C為圓心,CA為半徑畫、;
步驟2:以B為圓心,BA為半徑畫、,交、儆邳c(diǎn)D;
步驟3:連接AD,交BC延長(zhǎng)線于點(diǎn)H.
小明說(shuō):圖中的BH⊥AD且平分AD.
小麗說(shuō):圖中AC平分∠BAD.
小強(qiáng)說(shuō):圖中點(diǎn)C為BH的中點(diǎn).
他們的說(shuō)法中正確的是 . 他的依據(jù)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:用3輛A型車和2輛B型車載滿貨物一次可運(yùn)貨共19噸;用2輛A型車和3輛B型車載滿貨物一次可運(yùn)貨共21噸.
(1)1輛A型車和1輛B型車都載滿貨物一次分別可以運(yùn)貨多少噸?
(2)某物流公司現(xiàn)有49噸貨物,計(jì)劃同時(shí)租用A型車輛,B型車輛,一次運(yùn)完,且恰好每輛車都載滿貨物.
①求、的值;
②若A型車每輛需租金130元/次,B型車每輛需租金200元/次.請(qǐng)求出租車費(fèi)用最少是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)任意有理數(shù)x,用[x]表示不大于x的最大整數(shù).例如:[1.3]=1,[3]=3,[﹣2.5]=﹣3.以下結(jié)論正確的是_____.(把你認(rèn)為正確結(jié)論的序號(hào)都填上)
①[﹣3.14]=﹣4;
②﹣[﹣x]=[x];
③[2x]=2[x];
④若[]=﹣4,則x的取值范圍是﹣≤x<﹣.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com