解:(1)AC=CD,理由為:
∵OA=OB,
∴∠OAB=∠B,
∵直線AC為圓O的切線,
∴∠OAC=∠OAB+∠DAC=90°,
∵OB⊥OC,
∴∠BOC=90°,
∴∠ODB+∠B=90°,
∵∠ODB=∠CDA,
∴∠CDA+∠B=90°,
∴∠DAC=∠CDA,
則AC=CD;
(2)在Rt△OAC中,AC=CD=2,AO=
,OC=OD+DC=OD+2,
根據(jù)勾股定理得:OC
2=AC
2+AO
2,即(OD+2)
2=2
2+(
)
2,
解得:OD=1.
分析:(1)AC=CD,理由為:由AC為圓的切線,利用切線的性質(zhì)得到∠OAC為直角,再由OC與OB垂直,得到∠BOC為直角,由OA=OB,利用等邊對等角得到一對角相等,再利用對頂角相等及等角的余角相等得到一對角相等,利用等角對等邊即可得證;
(2)由ODC=OD+DC,DC=AC,表示出OC,在直角三角形OAC中,利用勾股定理即可求出OD的長.
點評:此題考查了切線的性質(zhì),勾股定理,等腰三角形的性質(zhì),熟練掌握切線的性質(zhì)是解本題的關鍵.